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CHAPTER 1

Introduction

Differential equations emerge in various scientific and engineering domains for modeling physical phenomena. Most
differential equations of practical interest are analytically intractable. Traditionally, differential equations are solved
by numerical methods. Sophisticated algorithms exist to integrate differential equations in time and space. Time
integration techniques continue to be an active area of research and include backward difference formulas and Runge-
Kutta methods. Common spatial discretization approaches include the finite difference method (FDM), finite volume
method (FVM), and finite element method (FEM) as well as spectral methods such as the Fourier-spectral method.
These classical methods have been studied in detail and much is known about their convergence properties. Moreover,
highly optimized codes exist for solving differential equations of practical interest with these techniques. While these
methods are efficient and well-studied, their expressibility is limited by their function representation.

Artificial neural networks (ANN) are a framework of machine learning algorithms that use a collection of connected
units to learn function mappings. The most basic form of ANNs, multilayer perceptrons, have been proven to be
universal function approximators. This suggests the possibility of using ANNs to solve differential equations. Previous
studies have demonstrated that ANNs have the potential to solve ordinary differential equations (ODEs) and partial
differential equations (PDEs) with certain initial/boundary conditions. These methods show nice properties including
(1) continuous and differentiable solutions, (2) good interpolation properties, (3) less memory-intensive. By less
memory-intensive we mean that only the weights of the neural network have to be stored. The solution can then be
recovered anywhere in the solution domain because a trained neural network is a closed form solution.

Given the interest in developing neural networks for solving differential equations, it would be extremely beneficial to
have an easy-to-use software package that allows researchers to quickly set up and solve problems.

1.1 Differential Equations

Differential equations can be divided into 2 types: ordinary differential equations (ODEs) and partial differential
equations (PDEs).

1.1.1 Ordinary Differential Equations

An ordinary differential equation (ODE) is an differential equation that contains only one independent variable (a
scalar). Let 𝑡 ∈ R be the independent variable and 𝑥 : R → R be a function of 𝑡. An ordinary differential equation of
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order 𝑛 takes the form:

𝐹 (𝑡, 𝑥,
𝑑𝑥

𝑑𝑡
,
𝑑2𝑥

𝑑𝑡2
, . . . ,

𝑑𝑛𝑥

𝑑𝑡𝑛
) = 0,

A general solution of an 𝑛th-order equation is a solution containing 𝑛 arbitrary independent constants of integration.
A particular solution is derived from the general solution by setting the constants to particular values. This is often
done by imposing an initial condition or boundary condition to the ODE. The former corresponds to an initial value
problem (IVP) and the latter a boundary value problem (BVP).

Initial Value Problems

For the following ODE:

𝐹 (𝑡, 𝑥,
𝑑𝑥

𝑑𝑡
,
𝑑2𝑥

𝑑𝑡2
, . . . ,

𝑑𝑛𝑥

𝑑𝑡𝑛
) = 0,

If we specify that

𝑥(𝑡0) = 𝑥0,

then we have an initial value problem. Initial value problem can be seen as the question of how 𝑥 will evolve with time
given 𝑥 = 𝑥0 at time 𝑡 = 𝑡0.

Boundary Value Problems

A boundary value problem has conditions specified at the boundaries of the independent variables. In the context of
ordinary differential equations, a boundary problem is one that put some restrictions on 𝑥 at the initial 𝑡 and final 𝑡.
There are several kinds of boundary conditions.

For the following ODE:

𝐹 (𝑡, 𝑥,
𝑑𝑥

𝑑𝑡
,
𝑑2𝑥

𝑑𝑡2
, . . . ,

𝑑𝑛𝑥

𝑑𝑡𝑛
) = 0,

If we specify that

𝑥(𝑡𝑖𝑛𝑖) = 𝑓,

𝑥(𝑡𝑓𝑖𝑛) = 𝑔,

then we have a Dirichlet boundary condition.

If we specify that

𝑑𝑥

𝑑𝑡

⃒⃒⃒⃒
𝑡=𝑡𝑖𝑛𝑖

= 𝑓,

𝑑𝑥

𝑑𝑡

⃒⃒⃒⃒
𝑡=𝑡𝑓𝑖𝑛

= 𝑔,

then we have a Neumann boundary condition.

If we specify that

𝑥(𝑡𝑖𝑛𝑖) +
𝑑𝑥

𝑑𝑡

⃒⃒⃒⃒
𝑡=𝑡𝑖𝑛𝑖

= 𝑓,

𝑥(𝑡𝑓𝑖𝑛) +
𝑑𝑥

𝑑𝑡

⃒⃒⃒⃒
𝑡=𝑡𝑓𝑖𝑛

= 𝑔,

then we have a Robin boundary condition.

Boundary conditions of mixed types can also be specified on a different subset of the boundaries (In this case, that will
be one boundary condition for 𝑡 = 𝑡𝑖𝑛𝑖 and another boundary condition of a different type for 𝑡 = 𝑡𝑓𝑖𝑛).

2 Chapter 1. Introduction
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1.1.2 System of Ordinary Differential Equations

A number of coupled differential equations form a system of equations. Let 𝑡 ∈ R be the independent variable and
�⃗� : R → Rm be a function of 𝑡. A system of ordinary differential equations of order 𝑛 takes the form:

𝐹 (𝑡, �⃗�,
𝑑�⃗�

𝑑𝑡
,
𝑑2�⃗�

𝑑𝑡2
, . . . ,

𝑑𝑛�⃗�

𝑑𝑡𝑛
) = 0⃗,

This can be written in matrix form as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓0(𝑡, �⃗�,
𝑑�⃗�

𝑑𝑡
,
𝑑2�⃗�

𝑑𝑡2
, . . . ,

𝑑𝑛�⃗�

𝑑𝑡𝑛
)

𝑓1(𝑡, �⃗�,
𝑑�⃗�

𝑑𝑡
,
𝑑2�⃗�

𝑑𝑡2
, . . . ,

𝑑𝑛�⃗�

𝑑𝑡𝑛
)

...

𝑓𝑚−1(𝑡, �⃗�,
𝑑�⃗�

𝑑𝑡
,
𝑑2�⃗�

𝑑𝑡2
, . . . ,

𝑑𝑛�⃗�

𝑑𝑡𝑛
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠

1.2 Partial Differential Equations

A partial differential equation (PDE) is a differential equation that contains multiple independent variables. ODEs can
be seen as a special case of PDEs. A partial differential equation of 𝑢(𝑥1 . . . 𝑥𝑛) with 𝑛 independent variables takes
the form:

𝐹 (𝑥1, . . . 𝑥𝑛;𝑢,
𝜕𝑢

𝜕𝑥1
, . . .

𝜕𝑢

𝜕𝑥𝑛
;

𝜕2𝑢

𝜕𝑥1𝜕𝑥1
, . . .

𝜕2𝑢

𝜕𝑥1𝜕𝑥𝑛
; . . .) = 0.

Similar as PDE, a general solution of a PDE contains arbitrary independent constants of integration. A particular
solution is derived from the general solution by setting the constants to particular values. To fix to a particular solution,
we need to impose initial value conditions and boundary value conoditions as well.

1.3 About NeuroDiffEq

NeuroDiffEq is a Python package built with PyTorch that uses ANNs to solve ordinary and partial differential
equations (ODEs and PDEs). It is designed to encourage the user to focus more on the problem domain (What is
the differential equation we need to solve? What are the initial/boundary conditions?) and at the same time allow
them to dig into solution domain (What ANN architecture and loss function should be used? What are the training
hyperparameters?) when they want to. NeuroDiffEq can solve a variety of canonical PDEs including the heat
equation and Poisson equation in a Cartesian domain with up to two spatial dimensions. We are actively working on
extending NeuroDiffEq to support three spatial dimensions. NeuroDiffEq can also solve arbitrary systems of
nonlinear ordinary differential equations.

1.4 Two examples

1.4.1 Lotka–Volterra equations

The Lotka–Volterra equations are a system of first-order, nonlinear ODEs that have been used to model predator-prey
dynamics in biological systems as well as problems in chemical kinetics. They are given by:

𝑑𝑥(𝑡)

𝑑𝑡
= 𝛼𝑥(𝑡) − 𝛽𝑥(𝑡)𝑦(𝑡), 𝑥 (0) = 𝑥0

𝑑𝑦(𝑡)

𝑑𝑡
= 𝛿𝑥(𝑡)𝑦(𝑡) − 𝛾𝑦(𝑡), 𝑦 (0) = 𝑦0.

1.2. Partial Differential Equations 3
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The time-evolution of the population of the prey and predator are given by 𝑥 and 𝑦, respectively, with 𝑥0 and 𝑦0
the initial populations. The coupling parameters 𝛼, 𝛽, 𝛿 and 𝛾 describe the interaction of the two species. Let
𝛼 = 𝛽 = 𝛿 = 𝛾 = 1, 𝑥0 = 1.5, and 𝑦0 = 1.0. For comparison purposes, we solve this problem numerically with
scipy and NeuroDiffEq. Figure 1 compares the predator and prey populations from the numerical integrator and
the neural network. The solutions are qualitatively the same.

4 Chapter 1. Introduction
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Figure 1: Comparing numerical and ANN-based solutions of Lotka–Volterra equations.

1.4.2 Poisson’s equation

Poisson’s equation is a second-order linear PDE. It can be used to describe the potential field caused by a given charge
or mass density distribution. In two dimensional Cartesian coordinates, it takes the form:(︂

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2

)︂
𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦).

We solve the equation in the domain (𝑥, 𝑦) ∈ (0, 1) × (0, 1) with homogeneous Dirichlet boundary conditions,

𝑢(𝑥, 0) = 𝑢(𝑥, 1) = 𝑢(0, 𝑦) = 𝑢(1, 𝑦) = 0.

With 𝑓(𝑥, 𝑦) = 2𝑥(𝑦 − 1)(𝑦 − 2𝑥 + 𝑥𝑦 + 2)𝑒𝑥−𝑦 the analytical solution is

𝑢(𝑥, 𝑦) = 𝑥(1 − 𝑥)𝑦(1 − 𝑦)𝑒𝑥−𝑦.

Figure 2 presents contours of the neural network solution (left), the analytical solution (middle), and the error between
the analytical and neural network solution (right). The largest error in the neural network solution is around 6 · 10−5.

6 Chapter 1. Introduction
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Figure 2: Comparing analytical and ANN-based solutions of Poisson’s equation.

[ ]:

1.4. Two examples 7
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CHAPTER 2

Getting Started

[1]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib notebook

2.1 Solving ODEs

There are two ways to solve an ODE (or ODE system). 1. As a legacy option, ODEs can be solved by
neurodiffeq.ode.solve. 2. For users who want fine-grained control over the training process, please con-
sider using a neurodiffeq.solvers.Solver1d.

• The first option is easier to use but has been deprecated and might be removed in a future version.

• The second option is recommended for most users and supports advanced features like custom callbacks, check-
pointing, early stopping, gradient clipping, learning rate scheduling, curriculum learning, etc.

Just for the sake of notation in the following examples, here we see differentiation as an operation, then an ODE can
be rewritten as

𝐹 (𝑥, 𝑡) = 0.

2.1.1 ODE Example 1: Exponential Decay (using the legacy solve function)

To show how simple neurodiffeq can be, we’ll first introduce the legacy option with the solve function
form neurodiffeq.ode.

Start by solving

𝑑𝑢

𝑑𝑡
= −𝑢.

for 𝑢(𝑡) with 𝑢(0) = 1.0. The analytical solution is

𝑢 = 𝑒−𝑡.

9
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For neurodiffeq.ode.solve to solve this ODE, the following parameters needs to be specified:

• ode: a function representing the ODE to be solved. It should be a function that maps (𝑢, 𝑡) to 𝐹 (𝑢, 𝑡). Here we
are solving

𝐹 (𝑢, 𝑡) =
𝑑𝑢

𝑑𝑡
+ 𝑢 = 0,

then ode should be lambda u, t: diff(u, t) + u, where diff(u, t) is the first order derivative
of u with respect to t.

• condition: a neurodiffeq.conditions.BaseCondition instance representing the initial con-
dition / boundary condition of the ODE. Here we use neurodiffeq.conditions.IVP(t_0=0.0,
u_0=1.0) to ensure 𝑢(0) = 1.0.

• t_min and t_max: the domain of 𝑡 to solve the ODE on.

[2]: from neurodiffeq import diff # the differentiation operation
from neurodiffeq.ode import solve # the ANN-based solver
from neurodiffeq.conditions import IVP # the initial condition

[3]: exponential = lambda u, t: diff(u, t) + u # specify the ODE
init_val_ex = IVP(t_0=0.0, u_0=1.0) # specify the initial conditon

# solve the ODE
solution_ex, loss_ex = solve(

ode=exponential, condition=init_val_ex, t_min=0.0, t_max=2.0
)

/Users/liushuheng/Documents/GitHub/neurodiffeq/neurodiffeq/ode.py:260: FutureWarning:
→˓The `solve_system` function is deprecated, use a `neurodiffeq.solvers.Solver1D`
→˓instance instead
warnings.warn(

(Oops, we have a warning. As we have explained, the solve function still works but is deprecated. Hence we have
the warning message, which we’ll ignore for now.)

solve returns a tuple, where the first entry is the solution (as a function) and the second entry is the history (of loss
and other metrics) of training and validation. The solution is a function that maps 𝑡 to 𝑢. It accepts numpy.array
or troch.Tensor as its input. The default return type of the solution is torch.tensor. If we wanted to return
numpy.array, we can specify to_numpy=True. The history is a dictionary, where the ‘train_loss’ entry is the
training loss and the ‘valid_loss’ entry is the validation loss. Here we compare the ANN-based solution with the
analytical solution:

[4]: ts = np.linspace(0, 2.0, 50)
u_net = solution_ex(ts, to_numpy=True)
u_ana = np.exp(-ts)

plt.figure()
plt.plot(ts, u_net, label='ANN-based solution')
plt.plot(ts, u_ana, '.', label='analytical solution')
plt.ylabel('u')
plt.xlabel('t')
plt.title('comparing solutions')
plt.legend()
plt.show()

<IPython.core.display.Javascript object>

10 Chapter 2. Getting Started
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<IPython.core.display.HTML object>

[5]: plt.figure()
plt.plot(loss_ex['train_loss'], label='training loss')
plt.plot(loss_ex['valid_loss'], label='validation loss')
plt.yscale('log')
plt.title('loss during training')
plt.legend()
plt.show()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

We may want to see the check the solution and the loss function during solving the problem (training the network).
To do this, we need to pass a neurodiffeq.monitors.Monitor1D object to solve. A Monitor1D has the
following parameters:

• t_min and t_max: the region of 𝑡 we want to monitor

• check_every: the frequency of visualization. If check_every=100, then the monitor will visualize the
solution every 100 epochs.

%matplotlib notebook should be executed to allow Monitor1D to work. Here we solve the above ODE again.

[6]: from neurodiffeq.monitors import Monitor1D

[7]: # This must be executed for Jupyter Notebook environments
# If you are using Jupyter Lab, try `%matplotlib widget`
# Don't use `%matplotlib inline`!

%matplotlib notebook

solution_ex, _ = solve(
ode=exponential, condition=init_val_ex, t_min=0.0, t_max=2.0,
monitor=Monitor1D(t_min=0.0, t_max=2.0, check_every=100)

)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/Users/liushuheng/Documents/GitHub/neurodiffeq/neurodiffeq/ode.py:260: FutureWarning:
→˓The `solve_system` function is deprecated, use a `neurodiffeq.solvers.Solver1D`
→˓instance instead
warnings.warn(

/Users/liushuheng/Documents/GitHub/neurodiffeq/neurodiffeq/solvers.py:389:
→˓UserWarning: Passing `monitor` is deprecated, use a MonitorCallback and pass a list
→˓of callbacks instead
warnings.warn("Passing `monitor` is deprecated, "

Here we have two warnings. But don’t worry, the training process is not affected.

• The first one warns that we should use a neurodiffeq.solvers.Solver1D instance, which we have
discussed before.

• The second warning is slightly different. It says we should use a callback instead of using a monitor. Re-
member we said using a neurodiffeq.solvers.Solver1D allows flexible callbacks? This warning is
also caused by using the deprecated solve function.

2.1. Solving ODEs 11
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2.1.2 ODE Example 2: Harmonic Oscilator

Here we solve a harmonic oscillator:

𝐹 (𝑢, 𝑡) =
𝑑2𝑢

𝑑𝑡2
+ 𝑢 = 0

for

𝑢(0) = 0.0,
𝑑𝑢

𝑑𝑡
|𝑡=0 = 1.0

The analytical solution is

𝑢 = sin(𝑡)

We can include higher order derivatives in our ODE with the order keyword of diff, which is defaulted to 1.

Initial condition on
𝑑𝑢

𝑑𝑡
can be specified with the u_0_prime keyword of IVP.

[8]: harmonic_oscillator = lambda u, t: diff(u, t, order=2) + u
init_val_ho = IVP(t_0=0.0, u_0=0.0, u_0_prime=1.0)

Here we will use another keyword for solve:

• max_epochs: the number of epochs to run

[9]: solution_ho, _ = solve(
ode=harmonic_oscillator, condition=init_val_ho, t_min=0.0, t_max=2*np.pi,
max_epochs=3000,
monitor=Monitor1D(t_min=0.0, t_max=2*np.pi, check_every=100)

)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/Users/liushuheng/Documents/GitHub/neurodiffeq/neurodiffeq/ode.py:260: FutureWarning:
→˓The `solve_system` function is deprecated, use a `neurodiffeq.solvers.Solver1D`
→˓instance instead
warnings.warn(

/Users/liushuheng/Documents/GitHub/neurodiffeq/neurodiffeq/solvers.py:389:
→˓UserWarning: Passing `monitor` is deprecated, use a MonitorCallback and pass a list
→˓of callbacks instead
warnings.warn("Passing `monitor` is deprecated, "

This is the third time we see these warnings. I promise we’ll learn to get ride of them by the end of this chapter :)

[10]: ts = np.linspace(0, 2*np.pi, 50)
u_net = solution_ho(ts, to_numpy=True)
u_ana = np.sin(ts)

plt.figure()
plt.plot(ts, u_net, label='ANN-based solution')
plt.plot(ts, u_ana, '.', label='analytical solution')
plt.ylabel('u')
plt.xlabel('t')
plt.title('comparing solutions')
plt.legend()
plt.show()

12 Chapter 2. Getting Started
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<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

2.2 Solving Systems of ODEs

Systems of ODEs can be solved by neurodiffeq.ode.solve_system.

Again, just for the sake of notation in the following examples, here we see differentiation as an operation, and see each
element 𝑢𝑖of �⃗� as different dependent vairables, then a ODE system above can be rewritten as⎛⎜⎜⎜⎝

𝐹0(𝑢0, 𝑢1, . . . , 𝑢𝑚−1, 𝑡)
𝐹1(𝑢0, 𝑢1, . . . , 𝑢𝑚−1, 𝑡)

...
𝐹𝑚−1(𝑢0, 𝑢1, . . . , 𝑢𝑚−1, 𝑡)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠

2.2.1 Systems of ODE Example 1: Harmonic Oscilator

For the harmonic oscillator example above, if we let 𝑢1 = 𝑢 and 𝑢2 =
𝑑𝑢

𝑑𝑡
. We can rewrite this ODE into a system of

ODE:

𝑢
′

1 − 𝑢2 = 0, (2.1)

𝑢
′

2 + 𝑢1 = 0,(2.2)
𝑢1(0) = 0,(2.3)
𝑢2(0) = 1.(2.4)

Here the analytical solution is

𝑢1 = sin(𝑡), (2.5)
𝑢2 = cos(𝑡).(2.6)

The solve_system function is for solving ODE systems. The signature is almost the same as solve except that
we specify an ode_system and a set of conditions.

• ode_system: a function representing the system of ODEs to be solved. If the our system of ODEs is
𝑓𝑖(𝑢0, 𝑢1, ..., 𝑢𝑚−1, 𝑡) = 0 for 𝑖 = 0, 1, ..., 𝑛 − 1 where 𝑢0, 𝑢1, ..., 𝑢𝑚−1 are dependent variables and 𝑡 is
the independent variable, then ode_system should map (𝑢0, 𝑢1, ..., 𝑢𝑚−1, 𝑡) to a 𝑛-element list where the 𝑖𝑡ℎ

element is the value of 𝑓𝑖(𝑢0, 𝑢1, ..., 𝑢𝑚−1, 𝑡).

• conditions: the initial value/boundary conditions as a list of Condition instance. They should be in an order
such that the first condition constraints the first variable in 𝑓𝑖’s (see above) signature (𝑢0). The second condition
constraints the second (𝑢1), and so on.

[11]: from neurodiffeq.ode import solve_system

[12]: # specify the ODE system
parametric_circle = lambda u1, u2, t : [diff(u1, t) - u2,

diff(u2, t) + u1]
# specify the initial conditions
init_vals_pc = [

IVP(t_0=0.0, u_0=0.0),

(continues on next page)
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IVP(t_0=0.0, u_0=1.0)
]

# solve the ODE system
solution_pc, _ = solve_system(

ode_system=parametric_circle, conditions=init_vals_pc, t_min=0.0, t_max=2*np.pi,
max_epochs=5000,
monitor=Monitor1D(t_min=0.0, t_max=2*np.pi, check_every=100)

)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/Users/liushuheng/Documents/GitHub/neurodiffeq/neurodiffeq/ode.py:260: FutureWarning:
→˓The `solve_system` function is deprecated, use a `neurodiffeq.solvers.Solver1D`
→˓instance instead
warnings.warn(

/Users/liushuheng/Documents/GitHub/neurodiffeq/neurodiffeq/solvers.py:389:
→˓UserWarning: Passing `monitor` is deprecated, use a MonitorCallback and pass a list
→˓of callbacks instead
warnings.warn("Passing `monitor` is deprecated, "

solve_system returns a tuple, where the first entry is the solution as a function and the second entry is the loss
history as a list. The solution is a function that maps 𝑡 to [𝑢0, 𝑢1, ..., 𝑢𝑚−1]. It accepts numpy.array or torch.
Tensor as its input.

Here we compare the ANN-based solution with the analytical solution:

[13]: ts = np.linspace(0, 2*np.pi, 100)
u1_net, u2_net = solution_pc(ts, to_numpy=True)
u1_ana, u2_ana = np.sin(ts), np.cos(ts)

plt.figure()
plt.plot(ts, u1_net, label='ANN-based solution of $u_1$')
plt.plot(ts, u1_ana, '.', label='Analytical solution of $u_1$')
plt.plot(ts, u2_net, label='ANN-based solution of $u_2$')
plt.plot(ts, u2_ana, '.', label='Analytical solution of $u_2$')
plt.ylabel('u')
plt.xlabel('t')
plt.title('comparing solutions')
plt.legend()
plt.show()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

2.2.2 Systems of ODE Example 2: Lotka–Volterra equations

The previous examples are rather simple because they are both linear ODE systems. We have numerous existing
numerical methods that solve these linear ODEs very well. To show the capability neurodiffeq, let’s see this example
of nonlinear ODEs.

Lotka–Volterra equations are a pair of nonlinear ODE frequently used to describe the dynamics of biological systems

14 Chapter 2. Getting Started
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in which two species interact, one as a predator and the other as prey:

𝑑𝑢

𝑑𝑡
= 𝛼𝑢− 𝛽𝑢𝑣 (2.7)

𝑑𝑣

𝑑𝑡
= 𝛿𝑢𝑣 − 𝛾𝑣(2.8)

Let 𝛼 = 𝛽 = 𝛿 = 𝛾 = 1. Here we solve this pair of ODE when 𝑢(0) = 1.5 and 𝑣(0) = 1.0.

If not specified otherwise, solve and solve_system will use a fully-connected network with 1 hidden layer with
32 hidden units (tanh activation) to approximate each dependent variables. In some situations, we may want to use our
own neural network. For example, the default neural net is not good at solving a problem where the solution oscillates.
However, if we know in advance that the solution oscillates, we can use sin as activation function, which resulted in
much faster convergence.

neurodiffeq.FCNN is a fully connected neural network. It is initiated by the following parameters:

• hidden_units: number of units in each hidden layer. If you have 3 hidden layers with 32, 64, and 16 neurons
respectively, hidden_units should be a tuple (32, 64, 16).

• actv: a torch.nn.Module class. e.g. nn.Tanh, nn.Sigmoid.

Here we will use another keyword for solve_system:

• nets: a list of networks to be used to approximate each dependent variable

[14]: from neurodiffeq.networks import FCNN # fully-connect neural network
from neurodiffeq.networks import SinActv # sin activation

[15]: # specify the ODE system and its parameters
alpha, beta, delta, gamma = 1, 1, 1, 1
lotka_volterra = lambda u, v, t : [ diff(u, t) - (alpha*u - beta*u*v),

diff(v, t) - (delta*u*v - gamma*v), ]
# specify the initial conditions
init_vals_lv = [

IVP(t_0=0.0, u_0=1.5), # 1.5 is the value of u at t_0 = 0.0
IVP(t_0=0.0, u_0=1.0), # 1.0 is the value of v at t_0 = 0.0

]

# specify the network to be used to approximate each dependent variable
# the input units and output units default to 1 for FCNN
nets_lv = [

FCNN(n_input_units=1, n_output_units=1, hidden_units=(32, 32), actv=SinActv),
FCNN(n_input_units=1, n_output_units=1, hidden_units=(32, 32), actv=SinActv)

]

# solve the ODE system
solution_lv, _ = solve_system(

ode_system=lotka_volterra, conditions=init_vals_lv, t_min=0.0, t_max=12,
nets=nets_lv, max_epochs=3000,
monitor=Monitor1D(t_min=0.0, t_max=12, check_every=100)

)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/Users/liushuheng/Documents/GitHub/neurodiffeq/neurodiffeq/ode.py:260: FutureWarning:
→˓The `solve_system` function is deprecated, use a `neurodiffeq.solvers.Solver1D`
→˓instance instead
warnings.warn(

(continues on next page)
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/Users/liushuheng/Documents/GitHub/neurodiffeq/neurodiffeq/solvers.py:389:
→˓UserWarning: Passing `monitor` is deprecated, use a MonitorCallback and pass a list
→˓of callbacks instead
warnings.warn("Passing `monitor` is deprecated, "

2.2.3 Tired of the annoying warning messages? Let’s get rid of them by using a
‘Solver’

Now that you are familiar with the usage of solve, let’s try the second way of solving ODEs – using a
neurodiffeq.solvers.Solver1D instance. If you are familiar with sklearn or keras, the workflow with
a Solver is quite similar.

1. Instantiate a solver. (Specify the ODE/PDE system, initial/boundary conditions, problem domain, etc.)

2. Fit the solver (Specify number of epochs to train, callbacks in each epoch, monitor, etc.)

3. Get the solutions and other internal variables.

This is the recommended way of solving ODEs (and PDEs later). Once you learn to use a Solver, you should
stick to this way instead of using a solve function.

[16]: from neurodiffeq.solvers import Solver1D

# Let's create a monitor first
monitor = Monitor1D(t_min=0.0, t_max=12.0, check_every=100)
# ... and turn it into a Callback instance
monitor_callback = monitor.to_callback()

# Instantiate a solver instance
solver = Solver1D(

ode_system=lotka_volterra,
conditions=init_vals_lv,
t_min=0.1,
t_max=12.0,
nets=nets_lv,

)

# Fit the solver (i.e., train the neural networks)
solver.fit(max_epochs=3000, callbacks=[monitor_callback])

# Get the solution
solution_lv = solver.get_solution()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[17]: ts = np.linspace(0, 12, 100)

# ANN-based solution
prey_net, pred_net = solution_lv(ts, to_numpy=True)

# numerical solution
from scipy.integrate import odeint
def dPdt(P, t):

return [P[0]*alpha - beta*P[0]*P[1], delta*P[0]*P[1] - gamma*P[1]]

(continues on next page)
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P0 = [1.5, 1.0]
Ps = odeint(dPdt, P0, ts)
prey_num = Ps[:,0]
pred_num = Ps[:,1]

fig = plt.figure(figsize=(12, 5))
ax1, ax2 = fig.subplots(1, 2)
ax1.plot(ts, prey_net, label='ANN-based solution of prey')
ax1.plot(ts, prey_num, '.', label='numerical solution of prey')
ax1.plot(ts, pred_net, label='ANN-based solution of predator')
ax1.plot(ts, pred_num, '.', label='numerical solution of predator')
ax1.set_ylabel('population')
ax1.set_xlabel('t')
ax1.set_title('Comparing solutions')
ax1.legend()

ax2.set_title('Error of ANN solution from numerical solution')
ax2.plot(ts, prey_net-prey_num, label='error in prey number')
ax2.plot(ts, pred_net-pred_num, label='error in predator number')
ax2.set_ylabel('populator')
ax2.set_xlabel('t')
ax2.legend()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[17]: <matplotlib.legend.Legend at 0x7fb359dec7f0>

2.3 Solving PDEs

Two-dimensional PDEs can be solved by the legacy neurodiffeq.pde.solve2D or the more flexible
neurodiffeq.solvers.Solver2D.

Aain, just for the sake of notation in the following examples, here we see differentiation as an operation, then an PDE
of 𝑢(𝑥, 𝑦) can be rewritten as:

𝐹 (𝑢, 𝑥, 𝑦) = 0.

2.3.1 PDE Example 1: Laplace’s Equation

Here we solve 2-D Laplace equation on a Cartesian boundary with Dirichlet boundary condition:

𝐹 (𝑢, 𝑥, 𝑦) =
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0

for (𝑥, 𝑦) ∈ [0, 1] × [0, 1]

2.3. Solving PDEs 17
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s.t.

𝑢(𝑥, 𝑦)

⃒⃒⃒⃒
𝑥=0

= sin(𝜋𝑦)

𝑢(𝑥, 𝑦)

⃒⃒⃒⃒
𝑥=1

= 0

𝑢(𝑥, 𝑦)

⃒⃒⃒⃒
𝑦=0

= 0

𝑢(𝑥, 𝑦)

⃒⃒⃒⃒
𝑦=1

= 0

The analytical solution is

𝑢(𝑥, 𝑦) =
sin(𝜋𝑦) sinh(𝜋(1 − 𝑥))

sinh(𝜋)

Here we have a Dirichlet boundary condition on both 4 edges of the orthogonal box. We will be using
DirichletBVP2D for this boundary condition. The arguments x_min_val, x_max_val, y_min_val and

y_max_val correspond to 𝑢(𝑥, 𝑦)

⃒⃒⃒⃒
𝑥=0

, 𝑢(𝑥, 𝑦)

⃒⃒⃒⃒
𝑥=1

, 𝑢(𝑥, 𝑦)

⃒⃒⃒⃒
𝑦=0

and 𝑢(𝑥, 𝑦)

⃒⃒⃒⃒
𝑦=1

. Note that they should all be func-

tions of 𝑥 or 𝑦. These functions are expected to take in a torch.tensor and return a torch.tensor, so if the
function involves some elementary functions like sin, we should use torch.sin instead of numpy.sin.

Like in the ODE case, we have two ways to solve 2-D PDEs.

1. The neurodiffeq.pde.solve2D function is almost the same as solve and solve_system in the
neurodiffeq.ode module. Again, this way is deprecated and won’t be covered here.

2. The neurodiffeq.solvers.Solver2D class is almost the same as neurodiffeq.solvers.
Solver1D.

The difference is that we indicate the domain of our problem with xy_min and xy_max, they are tuples representing
the ‘lower left’ point and ‘upper right’ point of our domain.

Also, we need to use neurodiffeq.generators.Generator2D and neurodiffeq.monitors.
Monitor2D.

[18]: from neurodiffeq.conditions import DirichletBVP2D
from neurodiffeq.solvers import Solver2D
from neurodiffeq.monitors import Monitor2D
from neurodiffeq.generators import Generator2D
import torch

[19]: # Define the PDE system
# There's only one (Laplace) equation in the system, so the function maps (u, x, y)
→˓to a single entry
laplace = lambda u, x, y: [

diff(u, x, order=2) + diff(u, y, order=2)
]

# Define the boundary conditions
# There's only one function to be solved for, so we only have a single condition
conditions = [

DirichletBVP2D(
x_min=0, x_min_val=lambda y: torch.sin(np.pi*y),
x_max=1, x_max_val=lambda y: 0,
y_min=0, y_min_val=lambda x: 0,

(continues on next page)
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y_max=1, y_max_val=lambda x: 0,
)

]

# Define the neural network to be used
# Again, there's only one function to be solved for, so we only have a single network
nets = [

FCNN(n_input_units=2, n_output_units=1, hidden_units=[512])
]

# Define the monitor callback
monitor=Monitor2D(check_every=10, xy_min=(0, 0), xy_max=(1, 1))
monitor_callback = monitor.to_callback()

# Instantiate the solver
solver = Solver2D(

pde_system=laplace,
conditions=conditions,
xy_min=(0, 0), # We can omit xy_min when both train_generator and valid_

→˓generator are specified
xy_max=(1, 1), # We can omit xy_max when both train_generator and valid_

→˓generator are specified
nets=nets,
train_generator=Generator2D((32, 32), (0, 0), (1, 1), method='equally-spaced-noisy

→˓'),
valid_generator=Generator2D((32, 32), (0, 0), (1, 1), method='equally-spaced'),

)

# Fit the neural network
solver.fit(max_epochs=200, callbacks=[monitor_callback])

# Obtain the solution
solution_neural_net_laplace = solver.get_solution()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Here we create a function to help us visualize the shape of the solution and the residual.

[20]: from mpl_toolkits.mplot3d import Axes3D
def plt_surf(xx, yy, zz, z_label='u', x_label='x', y_label='y', title=''):

fig = plt.figure(figsize=(16, 8))
ax = Axes3D(fig)
surf = ax.plot_surface(xx, yy, zz, rstride=2, cstride=1, alpha=0.8, cmap='hot')
ax.set_xlabel(x_label)
ax.set_ylabel(y_label)
ax.set_zlabel(z_label)
fig.suptitle(title)
ax.set_proj_type('ortho')
plt.show()

[21]: xs, ys = np.linspace(0, 1, 101), np.linspace(0, 1, 101)
xx, yy = np.meshgrid(xs, ys)
sol_net = solution_neural_net_laplace(xx, yy, to_numpy=True)
plt_surf(xx, yy, sol_net, title='$u(x, y)$ as solved by neural network')
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<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[22]: solution_analytical_laplace = lambda x, y: np.sin(np.pi*y) * np.sinh(np.pi*(1-x))/np.
→˓sinh(np.pi)
sol_ana = solution_analytical_laplace(xx, yy)
plt_surf(xx, yy, sol_net-sol_ana, z_label='residual', title='residual of the neural
→˓network solution')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

2.3.2 PDE Example 2: 1-D Heat Equation

Here we solve 1-D heat equation:

𝜕𝑢

𝜕𝑡
− 𝑘

𝜕2𝑢

𝜕𝑥2
= 0

with an initial condition and 2 Neumann boundary on each end:

𝑢(𝑥, 𝑡)

⃒⃒⃒⃒
𝑡=0

= sin(𝜋𝑥)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=0

= 𝜋 exp(−𝑘𝜋2𝑡)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=1

= −𝜋 exp(−𝑘𝜋2𝑡)

The analytical solution is:

𝑢(𝑥, 𝑡) = sin(𝜋
𝑥

𝐿
) exp(

−𝑘𝜋2𝑡

𝐿2
)

Since we are still solving in a 2-D space (𝑥 and 𝑡), we will still be using solve2D. We use a IBVP1D condition
to enforce our initial and boundary condition. The arguments t_min_val, x_min_prime, and x_max_prime

correspond to 𝑢(𝑥, 𝑡)

⃒⃒⃒⃒
𝑡=0

,
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=0

and
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=1

.

[23]: from neurodiffeq.conditions import IBVP1D
from neurodiffeq.pde import make_animation

[24]: k, L, T = 0.3, 2, 3
# Define the PDE system
# There's only one (heat) equation in the system, so the function maps (u, x, y) to a
→˓single entry
heat = lambda u, x, t: [

diff(u, t) - k * diff(u, x, order=2)
]

# Define the initial and boundary conditions
# There's only one function to be solved for, so we only have a single condition
→˓object
conditions = [

IBVP1D(

(continues on next page)

20 Chapter 2. Getting Started



neurodiffeq Documentation

(continued from previous page)

t_min=0, t_min_val=lambda x: torch.sin(np.pi * x / L),
x_min=0, x_min_prime=lambda t: np.pi/L * torch.exp(-k*np.pi**2*t/L**2),
x_max=L, x_max_prime=lambda t: -np.pi/L * torch.exp(-k*np.pi**2*t/L**2)

)
]

# Define the neural network to be used
# Again, there's only one function to be solved for, so we only have a single network
nets = [

FCNN(n_input_units=2, hidden_units=(32, 32))
]

# Define the monitor callback
monitor=Monitor2D(check_every=10, xy_min=(0, 0), xy_max=(L, T))
monitor_callback = monitor.to_callback()

# Instantiate the solver
solver = Solver2D(

pde_system=heat,
conditions=conditions,
xy_min=(0, 0), # We can omit xy_min when both train_generator and valid_

→˓generator are specified
xy_max=(L, T), # We can omit xy_max when both train_generator and valid_

→˓generator are specified
nets=nets,
train_generator=Generator2D((32, 32), (0, 0), (L, T), method='equally-spaced-noisy

→˓'),
valid_generator=Generator2D((32, 32), (0, 0), (L, T), method='equally-spaced'),

)

# Fit the neural network
solver.fit(max_epochs=200, callbacks=[monitor_callback])

# Obtain the solution
solution_neural_net_heat = solver.get_solution()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

We can use make_animation to animate the solution. Here we also check the residual of our solution.

[25]: xs = np.linspace(0, L, 101)
ts = np.linspace(0, T, 101)
xx, tt = np.meshgrid(xs, ts)
make_animation(solution_neural_net_heat, xs, ts)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[25]: <matplotlib.animation.FuncAnimation at 0x7fb3783f36d0>

[26]: solution_analytical_heat = lambda x, t: np.sin(np.pi*x/L) * np.exp(-k * np.pi**2 * t /
→˓ L**2)
sol_ana = solution_analytical_heat(xx, tt)
sol_net = solution_neural_net_heat(xx, tt, to_numpy=True)
plt_surf(xx, tt, sol_net-sol_ana, y_label='t', z_label='residual of the neural
→˓network solution') (continues on next page)
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<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

2.4 Irregular Domain

[27]: import numpy as np
import torch
from torch import nn
from torch import optim
from neurodiffeq import diff
from neurodiffeq.networks import FCNN
from neurodiffeq.pde import solve2D, Monitor2D
from neurodiffeq.generators import Generator2D, PredefinedGenerator
from neurodiffeq.pde import CustomBoundaryCondition, Point, DirichletControlPoint
import matplotlib.pyplot as plt
import matplotlib.tri as tri

neurodiffeq also implemented a method (https://ieeexplore.ieee.org/document/5061501) to impose Dirichlet
boundary condition on an irregular domain. Here we show a problem that is defined on a star shaped domain. The
following cell are some helper functions we will use later.

[28]: def get_grid(x_from_to, y_from_to, x_n_points=100, y_n_points=100, as_tensor=False):
x_from, x_to = x_from_to
y_from, y_to = y_from_to
if as_tensor:

x = torch.linspace(x_from, x_to, x_n_points)
y = torch.linspace(y_from, y_to, y_n_points)
return torch.meshgrid(x, y)

else:
x = np.linspace(x_from, x_to, x_n_points)
y = np.linspace(y_from, y_to, y_n_points)
return np.meshgrid(x, y)

def create_contour(ax, xs, ys, zs, cdbc=None):
triang = tri.Triangulation(xs, ys)
xs = xs[triang.triangles].mean(axis=1)
ys = ys[triang.triangles].mean(axis=1)
if cdbc:

xs, ys = torch.tensor(xs), torch.tensor(ys)
in_domain = cdbc.in_domain(xs, ys).detach().numpy()
triang.set_mask(~in_domain)

contour = ax.tricontourf(triang, zs, cmap='coolwarm')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_aspect('equal', adjustable='box')
return contour

def compare_contour(sol_net, sol_ana, eval_on_xs, eval_on_ys, cdbc=None):
eval_on_xs, eval_on_ys = eval_on_xs.flatten(), eval_on_ys.flatten()
s_net = sol_net(eval_on_xs, eval_on_ys, to_numpy=True)
s_ana = sol_ana(eval_on_xs, eval_on_ys)

(continues on next page)
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fig = plt.figure(figsize=(18, 4))

ax1 = fig.add_subplot(131)
cs1 = create_contour(ax1, eval_on_xs, eval_on_ys, s_net, cdbc)
ax1.set_title('ANN-based solution')
cbar1 = fig.colorbar(cs1, format='%.0e', ax=ax1)

ax2 = fig.add_subplot(132)
cs2 = create_contour(ax2, eval_on_xs, eval_on_ys, s_ana, cdbc)
ax2.set_title('analytical solution')
cbar2 = fig.colorbar(cs2, format='%.0e', ax=ax2)

ax3 = fig.add_subplot(133)
cs3 = create_contour(ax3, eval_on_xs, eval_on_ys, s_net-s_ana, cdbc)
ax3.set_title('residual of ANN-based solution')
cbar3 = fig.colorbar(cs3, format='%.0e', ax=ax3)

The problem we want to solve is defined on a hexagram that is centered at the origin. The uppermost vertex of the
hexagram locates at (0, 1) and the lowermost vertex locates at (0,−1). The differential equation is:

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+ 𝑒𝑢 = 1 + 𝑥2 + 𝑦2 +

4

(1 + 𝑥2 + 𝑦2)2

We have a Dirichlet condition along the boundary of the domain:

𝑢(𝑥, 𝑦) = ln(1 + 𝑥2 + 𝑦2)

The analytical solution is:

𝑢(𝑥, 𝑦) = ln(1 + 𝑥2 + 𝑦2)

[29]: def solution_analytical_star(x, y):
return np.log(1+x**2+y**2)

neurodiffeq.pde.CustomBoundaryCondition imposes boundary condition on a irregular domain. To
specify this domain, we will pass to CustomBoundaryCondition a collection of control points that fall on the
boundary. Here on each edge of the hexagram, we create 11 neurodiffeq.pde.DirichletControlPoint
that impose the value of 𝑢 at these location. This collection of DirichletControlPoint are then passed to
CustomBoundaryCondition to fit the trial solution.

[30]: edge_length = 2.0 / np.sin(np.pi/3) / 4
points_on_each_edge = 11
step_size = edge_length / (points_on_each_edge-1)

direction_theta = np.pi*2/3
left_turn_theta = np.pi*1/3
right_turn_theta = -np.pi*2/3

control_points_star = []
point_x, point_y = 0.0, -1.0
for i_edge in range(12):

for i_step in range(points_on_each_edge-1):

(continues on next page)
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control_points_star.append(
DirichletControlPoint(

loc=(point_x, point_y),
val=solution_analytical_star(point_x, point_y)

)
)
point_x += step_size*np.cos(direction_theta)
point_y += step_size*np.sin(direction_theta)

direction_theta += left_turn_theta if (i_edge % 2 == 0) else right_turn_theta

cdbc_star = CustomBoundaryCondition(
center_point=Point((0.0, 0.0)),
dirichlet_control_points=control_points_star

)

Here we use a set of predifined points as our training set. These points are from a 32 × 32 grid in (−1, 1) × (−1, 1).
We filter out the points that don’t fall in the domain (CustomBoundaryCondition has an in_domain method
that returns a mask of points that are in the domain) and use the rest as the training set. We also specify a validation
set that is denser.

[31]: %matplotlib notebook
def to_np(tensor):

return tensor.detach().numpy()

xx_train, yy_train = get_grid(
x_from_to=(-1, 1), y_from_to=(-1, 1),
x_n_points=32, y_n_points=32,
as_tensor=True

)
is_in_domain_train = cdbc_star.in_domain(xx_train, yy_train)
xx_train, yy_train = to_np(xx_train), to_np(yy_train)
xx_train, yy_train = xx_train[is_in_domain_train], yy_train[is_in_domain_train]
train_gen = PredefinedGenerator(xx_train, yy_train)

xx_valid, yy_valid = get_grid(
x_from_to=(-1, 1), y_from_to=(-1, 1),
x_n_points=100, y_n_points=100,
as_tensor=True

)
is_in_domain_valid = cdbc_star.in_domain(xx_valid, yy_valid)
xx_valid, yy_valid = to_np(xx_valid), to_np(yy_valid)
xx_valid, yy_valid = xx_valid[is_in_domain_valid], yy_valid[is_in_domain_valid]
valid_gen = PredefinedGenerator(xx_valid, yy_valid)

plt.figure(figsize=(7, 7))
plt.scatter(xx_train, yy_train)
plt.xlim(-1, 1)
plt.ylim(-1, 1)
plt.gca().set_aspect('equal', adjustable='box')
plt.title('training points');

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

In this case, since we know the analytical solution. We can keep track of the mean squared error of our approximation.
This can be done by passing a dictionary to the metrics keyword of the solve2D function. The (key, value) are
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(metric name, function that calculates the metric).

[32]: %matplotlib notebook
def mse(u, x, y):

true_u = torch.log(1+x**2+y**2)
return torch.mean( (u - true_u)**2 )

# Define the differential equation
def de_star(u, x, y):

return [diff(u, x, order=2) + diff(u, y, order=2) + torch.exp(u) - 1.0 - x**2 -
→˓y**2 - 4.0/(1.0+x**2+y**2)**2]

# fully connected network with one hidden layer (40 hidden units with Sigmoid
→˓activation)
net = FCNN(n_input_units=2, hidden_units=(40, 40), actv=nn.ELU)
adam = optim.Adam(params=net.parameters(), lr=0.01)

# Define the monitor callback
monitor = Monitor2D(check_every=10, xy_min=(-1, -1), xy_max=(1, 1))
monitor_callback = monitor.to_callback()

# Instantiate the solver
solver = Solver2D(

pde_system=de_star,
conditions=[cdbc_star],
xy_min=(-1, -1), # We can omit xy_min when both train_generator and valid_

→˓generator are specified
xy_max=(1, 1), # We can omit xy_max when both train_generator and valid_

→˓generator are specified
nets=nets,
train_generator=train_gen,
valid_generator=valid_gen,

)

# Fit the neural network, train on 32 x 32 grids
solver.fit(max_epochs=100, callbacks=[monitor_callback])

# Obtain the solution
solution_neural_net_star = solver.get_solution()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

We can compare the neural network solution with the analytical solution:

[34]: %matplotlib notebook
compare_contour(

solution_neural_net_star,
solution_analytical_star,
xx_valid, yy_valid, cdbc=cdbc_star

)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[ ]:
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CHAPTER 3

Advanced Uses

[1]: import numpy as np
import torch
from neurodiffeq.neurodiffeq import safe_diff as diff
from neurodiffeq.ode import solve, solve_system
from neurodiffeq.solvers import Solver1D
from neurodiffeq.monitors import Monitor1D
from neurodiffeq.conditions import IVP

import matplotlib.pyplot as plt
%matplotlib notebook

3.1 Tuning the Solver

The solve* functions (in neurodiffeq.ode, neurodiffeq.pde, neurodiffeq.pde_spherical) and
Solver* classes (in neurodiffeq.solvers) choose some hyperparameters by default. For example, in
neurodiffeq.solver.Solver1D, by default: * the solution is approximated by a fully connected network
of 2 hidden layers with 32 units each (tanh activation), * for each epoch we train on 16 different points that are gener-
ated by adding a Gaussian noise on the 32 equally spaced points on the 𝑡 domain, * an Adam optimizer with learning
rate 0.001 is used

Sometimes we may want to choose these hyperparameters ourselves. We will be using the harmonic oscillator problem
from above to demonstrate how to do that.

3.1.1 Simple Harmonic Oscillator Example

In the following example, we demonstrate how to change these default settings using the harmonic oscillator as an
example.
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The differential equation and the initial condition are:

𝜕2𝑢

𝜕𝑡2
+ 𝑢 = 0

𝑢

⃒⃒⃒⃒
𝑡=0

= 0
𝜕𝑢

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

= 1

[2]: # Note that the function maps (u, t) to a single-entry list
harmonic_oscillator = lambda u, t: [ diff(u, t, order=2) + u ]
init_val_ho = IVP(t_0=0.0, u_0=0.0, u_0_prime=1.0)

3.1.2 Specifying the Networks

[3]: from neurodiffeq.networks import FCNN # fully-connect neural network
import torch.nn as nn # PyTorch neural network module

Whether you are using a neurodiffeq.solvers.Solver1D instance or the legacy functions neurodiffeq.
ode.solve and neurodiffeq.ode.solve_system to solve differential equations, you can specify the net-
work architecture you want to use.

The architecture must be defined as a subclass of torch.nn.Module. If you are familiar with PyTorch, this process
couldn’t be simpler. If you don’t know PyTorch at all, we have defined a neurodiffeq.networks.FCNN for you.
FCNN stands for Fully-Connected Neural Network. You can tweak it any how you want by specifying

1. hidden_units: number of units for each hidden layer. If you have 3 hidden layers with 32, 64, and 16
neurons respectively, then hidden_units should be a tuple (32, 64, 16).

2. actv: a torch.nn.Module class. e.g. nn.Tanh, nn.Sigmoid. Impirically, Swish works better in many
situations. We have implemented a Swish activation in neurodiffeq.networks for you to try out.

3. n_input_units and n_output_units: number of input/output units of the network. This is largely
dependent on your problem. In most cases, n_output_units should be 1. And n_input_units should
be the number of independent variables. In the case of ODE, this is 1, since we only have a single independent
variable 𝑡.

If you want more flexibility than only using fully connected networks, check out PyTorch’s tutorials on defining your
custom torch.nn.Module. Pro tip: it’s simpler than you think :)

Once you figure out how to define your own network (as an instance of torch.nn.Module), you can pass it to

1. neurodiffeq.solvers.Solver1D and other Solvers in this Module by specifying
nets=[your_net1, your_net2, ...]; or

2. neurodiffeq.ode.solve, neurodiffeq.pde.solve2D, neurodiffeq.pde_spherical.
solve_spherical, etc., by specifying net=your_net; or

3. neurodiffeq.ode.solve_system, neurodiffeq.pde.solve2D_sytem, neurodiffeq.
pde_spherical.solve_spherical_system, etc., by specifying nets=[your_net1,
your_net2, ...].

Notes: * Only the 1st way (using a Solver) is recommended, the 2nd and 3rd way (using a solve* function) are
deprecated will some day be removed; * In the 2nd case, these functions assumes you only solving a single equation
for a single function, so you pass in a single network net=...; * In the 1st and 3rd cases, they assume you are
solving arbitraily many equations for arbitrarily functions, so you pass in a list of networks nets=[...].

Here we create a fully connected network with 3 hidden layers, each with 16 units and tanh activation. We then use it
to fit our ODE solution.
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[4]: %matplotlib notebook
# Specify the network architecture
net_ho = FCNN(

hidden_units=(16, 16, 16), actv=nn.Tanh
)

# Create a monitor callback
from neurodiffeq.monitors import Monitor1D
monitor_callback = Monitor1D(t_min=0.0, t_max=2*np.pi, check_every=100).to_callback()

# Create a solver
solver = Solver1D(

ode_system=harmonic_oscillator, # Note that `harmonic_oscillator` returns a
→˓single-entry list

conditions=[init_val_ho], # Again, `conditions` is a single-entry list
t_min=0.0,
t_max=2*np.pi,
nets=[net_ho], # Again, `nets` is a single-entry list

)

# Fit the solver
solver.fit(max_epochs=1000, callbacks=[monitor_callback])

# Obtain the solution
solution_ho = solver.get_solution()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

3.1.3 Specifying the Training Set and Validation Set

Both Solver* classes and solve* functions train the neural network on a new set of points, randomly sampled
every time. These examples are 𝑡s drawn from the domain of 𝑡. The way these 𝑡s are generated can be specified by
passing a neurodiffeq.generators.BaseGenerator object as the train_generator argument (and
valid_generator argument) to Solver* classes or solve* functions. An Generator can be intialized by
the following arguments:

• size: the number of 𝑡s generated for each epoch

• t_min and t_max: the domain of 𝑡 from which we want to draw 𝑡s

• method: a string indicating how to generate the 𝑡𝑠. It should be one of the following: ‘uniform’, ‘equally-
spaced’, ‘equally-spaced-noisy’. If ‘uniform’, each 𝑡 will be drawn independently from the uniform distribution
Unif(t_min, t_max). If ‘equally-spaced’, all 𝑡s generated in the same epoch will form a grid where each 𝑡 is
equally spaced. ‘equally-spaced-noisy’ is a noisy version of ‘equally-spaced’ where we add a Gaussian noise
𝜖 ∼ 𝒩 (0, (t_max-t_min)/(4*size) )

Here we create an Generator that generates 64 𝑡s drawn from a uniform distribution for every epoch. Then we use
it to solve the ODE. In the meantime, foor every epoch, we will use another Generator that generates 128 𝑡s that
are equally spaced in the domain we want to solve.

[5]: from neurodiffeq.generators import Generator1D

[6]: %matplotlib notebook
# specify the training set and validation set
train_gen = Generator1D(size=64, t_min=0.0, t_max=2*np.pi, method='uniform')

(continues on next page)
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valid_gen = Generator1D(size=128, t_min=0.0, t_max=2*np.pi, method='equally-spaced')

# solve the ODE
solver = Solver1D(

ode_system=harmonic_oscillator,
conditions=[init_val_ho],
t_min=0.0,
t_max=2*np.pi,
train_generator=train_gen,
valid_generator=valid_gen,

)
solver.fit(

max_epochs=1000,
callbacks=[Monitor1D(t_min=0.0, t_max=2*np.pi, check_every=100).to_callback()]

)

solution_ho = solver.get_solution()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

3.1.4 Specifying the Optimizer

We can change the optimization algorithms by passing a torch.optim.Optimizer object to Solver* classes
and solve* functions as the optimizer argument.

If you are familiar with PyTorch, you know that to initialize an Optimizer, we need to tell it the parameters to
optimize. In other words, if we want to use a different optimizer from the default one, we also need to create our own
networks.

Here we create a fully connected network and an SGD optimizer to optimize its weights. Then we use them to solve
the ODE.

[7]: from torch.optim import SGD

[8]: %matplotlib notebook
# specify the network architecture
net_ho = FCNN(

n_input_units=1,
n_output_units=1,
hidden_units=(16, 16, 16),
actv=nn.Tanh,

)

nets = [net_ho]

# specify the optimizer
from itertools import chain

sgd_ho = SGD(
chain.from_iterable(n.parameters() for n in nets), # this gives all parameters in

→˓`nets`
lr=0.001, # learning rate
momentum=0.99, # momentum of SGD

)

(continues on next page)
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# solve the ODE
solver = Solver1D(

ode_system=harmonic_oscillator,
conditions=[init_val_ho],
t_min=0.0,
t_max=2*np.pi,
nets=nets,
optimizer=sgd_ho,

)

solver.fit(
max_epochs=1000,
callbacks=[Monitor1D(t_min=0.0, t_max=2*np.pi, check_every=100).to_callback()]

)

solution_ho = solver.get_solution()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

3.1.5 Specifying the Loss Function

We can change the loss function by passing a torch.nn._Loss object to solve and solve_system as the
criterion argument.

Here we use the mean absolute loss to solve the ODE.

[9]: from torch.nn import L1Loss

[10]: %matplotlib notebook
# solve the ODE
solver = Solver1D(

ode_system=harmonic_oscillator,
conditions=[init_val_ho],
t_min=0.0,
t_max=2*np.pi,
criterion=L1Loss(),

)
solver.fit(

max_epochs=1000,
callbacks=[Monitor1D(t_min=0.0, t_max=2*np.pi, check_every=100).to_callback()]

)

solution_ho = solver.get_solution()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

3.2 Access the Internals

When the network, generator, optimizer and loss function are specified outside solve and solve_system func-
tion, users will naturally have access to these objects. We may still want to access these objects when we are using
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default network architecture, generator, optimizer and loss function. We can get these internal objects by setting the
return_internal keyword to True. This will add a third element in the returned tuple, which is a dictionary
containing the reference to the network, example generator, optimizer and loss function.

3.2.1 Using a solve* function to get internals

[11]: # specify the ODE system
parametric_circle = lambda x1, x2, t : [diff(x1, t) - x2,

diff(x2, t) + x1]
# specify the initial conditions
init_vals_pc = [

IVP(t_0=0.0, u_0=0.0),
IVP(t_0=0.0, u_0=1.0),

]

# solve the ODE system
solution_pc, _, internal = solve_system(

ode_system=parametric_circle,
conditions=init_vals_pc,
t_min=0.0, t_max=2*np.pi,
return_internal=True

)

/Users/liushuheng/Documents/GitHub/neurodiffeq/neurodiffeq/ode.py:260: FutureWarning:
→˓The `solve_system` function is deprecated, use a `neurodiffeq.solvers.Solver1D`
→˓instance instead
warnings.warn(

[12]: internal

[12]: {'nets': [FCNN(
(NN): Sequential(

(0): Linear(in_features=1, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=32, bias=True)
(3): Tanh()
(4): Linear(in_features=32, out_features=2, bias=True)

)
),
FCNN(
(NN): Sequential(

(0): Linear(in_features=1, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=32, bias=True)
(3): Tanh()
(4): Linear(in_features=32, out_features=2, bias=True)

)
)],

'conditions': [<neurodiffeq.conditions.IVP at 0x7fd0e08d67c0>,
<neurodiffeq.conditions.IVP at 0x7fd0e08d6730>],

'train_generator': SamplerGenerator(size=32, generator=Generator1D(size=32, t_min=0.
→˓0, t_max=6.283185307179586, method='equally-spaced-noisy', noise_std=0.
→˓04908738521234052)),
'valid_generator': SamplerGenerator(size=32, generator=Generator1D(size=32, t_min=0.
→˓0, t_max=6.283185307179586, method='equally-spaced', noise_std=0.
→˓04908738521234052)),
'optimizer': Adam (

(continues on next page)
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Parameter Group 0
amsgrad: False
betas: (0.9, 0.999)
eps: 1e-08
lr: 0.001
weight_decay: 0

),
'criterion': <function neurodiffeq.solvers.BaseSolver.__init__.<locals>.<lambda>(r)>}

3.2.2 Using a Solver* instance to get internals

You get more internal objects when using the Solvers. The process is demonstrated as follows:

[13]: parametric_circle = lambda x1, x2, t: [diff(x1, t) - x2, diff(x2, t) + x1]

init_vals_pc = [
IVP(t_0=0.0, u_0=0.0),
IVP(t_0=0.0, u_0=1.0),

]

solver = Solver1D(
ode_system=parametric_circle,
conditions=init_vals_pc,
t_min=0.0,
t_max=2*np.pi,

)

solver.fit(max_epochs=100)
internals = solver.get_internals()

[14]: internals

[14]: {'metrics': {},
'n_batches': {'train': 1, 'valid': 4},
'best_nets': [FCNN(

(NN): Sequential(
(0): Linear(in_features=1, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=32, bias=True)
(3): Tanh()
(4): Linear(in_features=32, out_features=1, bias=True)

)
),
FCNN(
(NN): Sequential(

(0): Linear(in_features=1, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=32, bias=True)
(3): Tanh()
(4): Linear(in_features=32, out_features=1, bias=True)

)
)],

'criterion': <function neurodiffeq.solvers.BaseSolver.__init__.<locals>.<lambda>(r)>,
'conditions': [<neurodiffeq.conditions.IVP at 0x7fd0e08d6430>,
<neurodiffeq.conditions.IVP at 0x7fd0e08d6340>],

(continues on next page)
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(continued from previous page)

'global_epoch': 100,
'lowest_loss': 0.023892831479509158,
'n_funcs': 2,
'nets': [FCNN(

(NN): Sequential(
(0): Linear(in_features=1, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=32, bias=True)
(3): Tanh()
(4): Linear(in_features=32, out_features=1, bias=True)

)
),
FCNN(
(NN): Sequential(

(0): Linear(in_features=1, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=32, bias=True)
(3): Tanh()
(4): Linear(in_features=32, out_features=1, bias=True)

)
)],

'optimizer': Adam (
Parameter Group 0

amsgrad: False
betas: (0.9, 0.999)
eps: 1e-08
lr: 0.001
weight_decay: 0

),
'diff_eqs': <function __main__.<lambda>(x1, x2, t)>,
'generator': {'train': SamplerGenerator(size=32, generator=Generator1D(size=32, t_
→˓min=0.0, t_max=6.283185307179586, method='equally-spaced-noisy', noise_std=0.
→˓04908738521234052)),
'valid': SamplerGenerator(size=32, generator=Generator1D(size=32, t_min=0.0, t_

→˓max=6.283185307179586, method='equally-spaced', noise_std=0.04908738521234052))},
'train_generator': SamplerGenerator(size=32, generator=Generator1D(size=32, t_min=0.
→˓0, t_max=6.283185307179586, method='equally-spaced-noisy', noise_std=0.
→˓04908738521234052)),
'valid_generator': SamplerGenerator(size=32, generator=Generator1D(size=32, t_min=0.
→˓0, t_max=6.283185307179586, method='equally-spaced', noise_std=0.
→˓04908738521234052)),
't_min': 0.0,
't_max': 6.283185307179586}

[ ]:
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CHAPTER 4

API Reference

4.1 neurodiffeq.neurodiffeq

neurodiffeq.neurodiffeq.diff(u, t, order=1, shape_check=True)
The derivative of a variable with respect to another. diff defaults to the behaviour of safe_diff.

Parameters

• u (torch.Tensor) – The 𝑢 in
𝜕𝑢

𝜕𝑡
.

• t (torch.Tensor) – The 𝑡 in
𝜕𝑢

𝜕𝑡
.

• order (int) – The order of the derivative, defaults to 1.

• shape_check (bool) – Whether to perform shape checking or not, defaults to True
(since v0.2.0).

Returns The derivative evaluated at t.

Return type torch.Tensor

neurodiffeq.neurodiffeq.safe_diff(u, t, order=1)
The derivative of a variable with respect to another. Both tensors must have a shape of (n_samples, 1) See this
issue comment for details

Parameters

• u (torch.Tensor) – The 𝑢 in
𝜕𝑢

𝜕𝑡
.

• t (torch.Tensor) – The 𝑡 in
𝜕𝑢

𝜕𝑡
.

• order (int) – The order of the derivative, defaults to 1.

Returns The derivative evaluated at t.

Return type torch.Tensor
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neurodiffeq.neurodiffeq.unsafe_diff(u, t, order=1)
The derivative of a variable with respect to another. While there’s no requirement for shapes, errors could occur
in some cases. See this issue for details

Parameters

• u (torch.Tensor) – The 𝑢 in
𝜕𝑢

𝜕𝑡
.

• t (torch.Tensor) – The 𝑡 in
𝜕𝑢

𝜕𝑡
.

• order (int) – The order of the derivative, defaults to 1.

Returns The derivative evaluated at t.

Return type torch.Tensor

4.2 neurodiffeq.networks

4.3 neurodiffeq.conditions

class neurodiffeq.conditions.BaseCondition
Bases: object

Base class for all conditions.

A condition is a tool to re-parameterize the output(s) of a neural network. such that the re-parameterized
output(s) will automatically satisfy initial conditions (ICs) and boundary conditions (BCs) of the PDEs/ODEs
that are being solved.

Note:

• The nouns (re-)parameterization and condition are used interchangeably in the documentation and library.

• The verbs (re-)parameterize and enforce are different in that:

– (re)parameterize is said of network outputs;

– enforce is said of networks themselves.

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

parameterize(output_tensor, *input_tensors)
Re-parameterizes output(s) of a network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.
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• input_tensors (torch.Tensor) – Inputs to the neural network; i.e., sampled coordi-
nates; i.e., independent variables.

Returns The re-parameterized output of the network.

Return type torch.Tensor

Note: This method is abstract for BaseCondition

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.conditions.BundleIVP(t_0=None, u_0=None, u_0_prime=None, bun-
dle_conditions={})

Bases: neurodiffeq.conditions.BaseCondition

An initial value problem of one of the following forms:

• Dirichlet condition: 𝑢(𝑡0,𝜃) = 𝑢0.

• Neumann condition:
𝜕𝑢

𝜕𝑡

⃒⃒⃒⃒
𝑡=𝑡0

(𝜃) = 𝑢′
0.

Here 𝜃 = (𝜃1, 𝜃2, ..., 𝜃𝑛) ∈ R𝑛, where each 𝜃𝑖 represents a parameter, or a condition, of the ODE system that
we want to solve.

Parameters

• t_0 (float) – The initial time.

• u_0 (float) – The initial value of 𝑢. 𝑢(𝑡0,𝜃) = 𝑢0.

• u_0_prime (float, optional) – The initial derivative of 𝑢 w.r.t. 𝑡.
𝜕𝑢

𝜕𝑡

⃒⃒⃒⃒
𝑡=𝑡0

(𝜃) =

𝑢′
0. Defaults to None.

• bundle_conditions (dict{str: int, .., str: int}) – The initial condi-
tions that will be included in the total bundle, in addition to the parameters of the ODE
system. The values asociated with their respective keys used in bundle_conditions (e.g
bundle_conditions={‘t_0’: 0, ‘u_0’: 1, ‘u_0_prime’: 2}), must reflect the index of the tu-
ple used in theta_min and theta_max in neurodiffeq.solvers.BundleSolver1D,
(e.g theta_min=(t_0_min, u_0_min, u_0_prime_min)). Defaults to {}

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.
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Return type torch.Tensor

parameterize(output_tensor, t, *theta)
Re-parameterizes outputs such that the Dirichlet/Neumann condition is satisfied.

if t_0 is not included in the bundle:

• For Dirichlet condition, the re-parameterization is 𝑢(𝑡,𝜃) = 𝑢0 +
(︁

1 − 𝑒−(𝑡−𝑡0)
)︁

ANN(𝑡,𝜃)

• For Neumann condition, the re-parameterization is 𝑢(𝑡,𝜃) = 𝑢0 + (𝑡 − 𝑡0)𝑢′
0 +

(︁
1 − 𝑒−(𝑡−𝑡0)

)︁2

ANN(𝑡,𝜃)

if t_0 is included in the bundle:

• For Dirichlet condition, the re-parameterization is 𝑢(𝑡,𝜃) = 𝑢0 + (𝑡− 𝑡0) ANN(𝑡,𝜃)

• For Neumann condition, the re-parameterization is 𝑢(𝑡,𝜃) = 𝑢0 + (𝑡− 𝑡0)𝑢′
0 + (𝑡− 𝑡0)

2
ANN(𝑡,𝜃)

Where ANN is the neural network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• t (torch.Tensor) – First input to the neural network; i.e., sampled time-points; i.e., inde-
pendent variables.

• theta (tuple[torch.Tensor, .., torch.Tensor]) – Rest of the inputs to
the neural network; i.e., sampled bundle-points

Returns The re-parameterized output of the network.

Return type torch.Tensor

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.conditions.DirichletBVP(t_0, u_0, t_1, u_1)
Bases: neurodiffeq.conditions.BaseCondition

A double-ended Dirichlet boundary condition: 𝑢(𝑡0) = 𝑢0 and 𝑢(𝑡1) = 𝑢1.

Parameters

• t_0 (float) – The initial time.

• u_0 (float) – The initial value of 𝑢. 𝑢(𝑡0) = 𝑢0.

• t_1 (float) – The final time.

• u_1 (float) – The initial value of 𝑢. 𝑢(𝑡1) = 𝑢1.

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters
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• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

parameterize(output_tensor, t)
Re-parameterizes outputs such that the Dirichlet condition is satisfied on both ends of the domain.

The re-parameterization is 𝑢(𝑡) = (1− 𝑡)𝑢0 + 𝑡𝑢1 +
(︁

1 − 𝑒(1−𝑡)𝑡
)︁

ANN(𝑡), where 𝑡 =
𝑡− 𝑡0
𝑡1 − 𝑡0

and ANN

is the neural network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• t (torch.Tensor) – Input to the neural network; i.e., sampled time-points or another inde-
pendent variable.

Returns The re-parameterized output of the network.

Return type torch.Tensor

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.conditions.DirichletBVP2D(x_min, x_min_val, x_max, x_max_val, y_min,
y_min_val, y_max, y_max_val)

Bases: neurodiffeq.conditions.BaseCondition

An Dirichlet boundary condition on the boundary of [𝑥0, 𝑥1] × [𝑦0, 𝑦1], where

• 𝑢(𝑥0, 𝑦) = 𝑓0(𝑦);

• 𝑢(𝑥1, 𝑦) = 𝑓1(𝑦);

• 𝑢(𝑥, 𝑦0) = 𝑔0(𝑥);

• 𝑢(𝑥, 𝑦1) = 𝑔1(𝑥).

Parameters

• x_min (float) – The lower bound of x, the 𝑥0.

• x_min_val (callable) – The boundary value on 𝑥 = 𝑥0, i.e. 𝑓0(𝑦).

• x_max (float) – The upper bound of x, the 𝑥1.

• x_max_val (callable) – The boundary value on 𝑥 = 𝑥1, i.e. 𝑓1(𝑦).

• y_min (float) – The lower bound of y, the 𝑦0.

• y_min_val (callable) – The boundary value on 𝑦 = 𝑦0, i.e. 𝑔0(𝑥).

• y_max (float) – The upper bound of y, the 𝑦1.
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• y_max_val (callable) – The boundary value on 𝑦 = 𝑦1, i.e. 𝑔1(𝑥).

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

parameterize(output_tensor, x, y)
Re-parameterizes outputs such that the Dirichlet condition is satisfied on all four sides of the domain.

The re-parameterization is 𝑢(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + �̃�
(︀
1 − �̃�

)︀
𝑦
(︀
1 − 𝑦

)︀
ANN(𝑥, 𝑦), where

�̃� =
𝑥− 𝑥0

𝑥1 − 𝑥0
,

𝑦 =
𝑦 − 𝑦0
𝑦1 − 𝑦0

,

and ANN is the neural network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• x (torch.Tensor) – 𝑥-coordinates of inputs to the neural network; i.e., the sampled 𝑥-
coordinates.

• y (torch.Tensor) – 𝑦-coordinates of inputs to the neural network; i.e., the sampled 𝑦-
coordinates.

Returns The re-parameterized output of the network.

Return type torch.Tensor

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.conditions.DirichletBVPSpherical(r_0, f, r_1=None, g=None)
Bases: neurodiffeq.conditions.BaseCondition

The Dirichlet boundary condition for the interior and exterior boundary of the sphere, where the interior bound-
ary is not necessarily a point. The conditions are:

• 𝑢(𝑟0, 𝜃, 𝜑) = 𝑓(𝜃, 𝜑)

• 𝑢(𝑟1, 𝜃, 𝜑) = 𝑔(𝜃, 𝜑)

Parameters
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• r_0 (float) – The radius of the interior boundary. When 𝑟0 = 0, the interior boundary
collapses to a single point (center of the ball).

• f (callable) – The value of 𝑢 on the interior boundary. 𝑢(𝑟0, 𝜃, 𝜑) = 𝑓(𝜃, 𝜑).

• r_1 (float or None) – The radius of the exterior boundary. If set to None, g must also
be None.

• g (callable or None) – The value of 𝑢 on the exterior boundary. 𝑢(𝑟1, 𝜃, 𝜑) =
𝑔(𝜃, 𝜑). If set to None, r_1 must also be set to None.

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

parameterize(output_tensor, r, theta, phi)
Re-parameterizes outputs such that the Dirichlet condition is satisfied on both spherical boundaries.

• If both inner and outer boundaries are specified 𝑢(𝑟0, 𝜃, 𝜑) = 𝑓(𝜃, 𝜑) and 𝑢(𝑟1, 𝜃, 𝜑) = 𝑔(𝜃, 𝜑):

The re-parameterization is
(︀
1−𝑟

)︀
𝑓(𝜃, 𝜑)+𝑟𝑔(𝜃, 𝜑)+

(︁
1−𝑒𝑟(1−𝑟)

)︁
ANN(𝑟, 𝜃, 𝜑) where 𝑟 =

𝑟 − 𝑟0
𝑟1 − 𝑟0

;

• If only one boundary is specified (inner or outer) 𝑢(𝑟0, 𝜃, 𝜑) = 𝑓(𝜃, 𝜑)

The re-parameterization is 𝑓(𝜃, 𝜑) +
(︁

1 − 𝑒−|𝑟−𝑟0|
)︁

ANN(𝑟, 𝜃, 𝜑);

where ANN is the neural network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• r (torch.Tensor) – The radii (or 𝑟-component) of the inputs to the network.

• theta (torch.Tensor) – The co-latitudes (or 𝜃-component) of the inputs to the network.

• phi (torch.Tensor) – The longitudes (or 𝜑-component) of the inputs to the network.

Returns The re-parameterized output of the network.

Return type torch.Tensor

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.
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class neurodiffeq.conditions.DirichletBVPSphericalBasis(r_0, R_0, r_1=None,
R_1=None,
max_degree=None)

Bases: neurodiffeq.conditions.BaseCondition

Similar to neurodiffeq.conditions.DirichletBVPSpherical. The only difference is this condi-
tion is enforced on a neural net that only takes in 𝑟 and returns the spherical harmonic coefficients R(r). We
constrain the coefficients 𝑅𝑘(𝑟) in 𝑢(𝑟, 𝜃, 𝜑) =

∑︀
𝑘 𝑅𝑘(𝑟)𝑌𝑘(𝜃, 𝜑), where

{︀
𝑌𝑘(𝜃, 𝜑)

}︀𝐾

𝑘=1
can be any spherical

function basis. A recommended choice is the real spherical harmonics 𝑌 𝑚
𝑙 (𝜃, 𝜑), where 𝑙 is the degree of the

spherical harmonics and 𝑚 is the order of the spherical harmonics.

The boundary conditions are: R(𝑟0) = R0 and R(𝑟1) = R1, where R is a vector whose components are{︀
𝑅𝑘

}︀𝐾

𝑘=1

Parameters

• r_0 (float) – The radius of the interior boundary. When r_0 = 0, the interior boundary is
collapsed to a single point (center of the ball).

• R_0 (torch.Tensor) – The value of harmonic coefficients R on the interior boundary.
R(𝑟0) = R0.

• r_1 (float or None) – The radius of the exterior boundary. If set to None, R_1 must
also be None

• R_1 (torch.Tensor) – The value of harmonic coefficients R on the exterior boundary.
R(𝑟1) = R1.

• max_degree (int) – [DEPRECATED] Highest degree when using spherical harmonics.

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

parameterize(output_tensor, r)
Re-parameterizes outputs such that the Dirichlet condition is satisfied on both spherical boundaries.

• If both inner and outer boundaries are specified R(𝑟0, 𝜃, 𝜑) = R0 and R(𝑟1, 𝜃, 𝜑) = R1.

The re-parameterization is
(︀
1 − 𝑟

)︀
R0 + 𝑟R1 +

(︁
1 − 𝑒𝑟(1−𝑟)

)︁
ANN(𝑟) where 𝑟 =

𝑟 − 𝑟0
𝑟1 − 𝑟0

;

• If only one boundary is specified (inner or outer) R(𝑟0, 𝜃, 𝜑) = R0

The re-parameterization is R0 +
(︁

1 − 𝑒−|𝑟−𝑟0|
)︁

ANN(𝑟);

where ANN is the neural network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• r (torch.Tensor) – The radii (or 𝑟-component) of the inputs to the network.

Returns The re-parameterized output of the network.

Return type torch.Tensor
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set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.conditions.DoubleEndedBVP1D(x_min, x_max, x_min_val=None,
x_min_prime=None, x_max_val=None,
x_max_prime=None)

Bases: neurodiffeq.conditions.BaseCondition

A boundary condition on a 1-D range where 𝑥 ∈ [𝑥0, 𝑥1]. The conditions should have the following parts:

• 𝑢(𝑥0) = 𝑢0 or 𝑢′
𝑥(𝑥0) = 𝑢′

0,

• 𝑢(𝑥1) = 𝑢1 or 𝑢′
𝑥(𝑥1) = 𝑢′

1,

where 𝑢′
𝑥 =

𝜕𝑢

𝜕𝑥
.

Parameters

• x_min (float) – The lower bound of x, the 𝑥0.

• x_max (float) – The upper bound of x, the 𝑥1.

• x_min_val (callable, optional) – The Dirichlet boundary condition when 𝑥 =
𝑥0, the 𝑢(𝑥0), defaults to None.

• x_min_prime (callable, optional) – The Neumann boundary condition when
𝑥 = 𝑥0, the 𝑢′

𝑥(𝑥0), defaults to None.

• x_max_val (callable, optional) – The Dirichlet boundary condition when 𝑥 =
𝑥1, the 𝑢(𝑥1), defaults to None.

• x_max_prime (callable, optional) – The Neumann boundary condition when
𝑥 = 𝑥1, the 𝑢′

𝑥(𝑥1), defaults to None.

Raises NotImplementedError – When unimplemented boundary conditions are configured.

Note: This condition cannot be passed to neurodiffeq.conditions.EnsembleCondition unless
both boundaries uses Dirichlet conditions (by specifying only x_min_val and x_max_val) and force is
set to True in EnsembleCondition’s constructor.

enforce(net, x)
Enforces this condition on a network with inputs x.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• x (torch.Tensor) – The 𝑥-coordinates of the samples; i.e., the spatial coordinates.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor
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Note: This method overrides the default method of neurodiffeq.conditions.BaseCondition
. In general, you should avoid overriding enforce when implementing custom boundary conditions.

parameterize(u, x, *additional_tensors)
Re-parameterizes outputs such that the boundary conditions are satisfied.

There are four boundary conditions that are currently implemented:

• For Dirichlet-Dirichlet boundary condition 𝑢(𝑥0) = 𝑢0 and 𝑢(𝑥1) = 𝑢1:

The re-parameterization is 𝑢(𝑥) = 𝐴 + �̃�
(︀
1 − �̃�

)︀
ANN(𝑥), where 𝐴 =

(︀
1 − �̃�

)︀
𝑢0 +

(︀
�̃�
)︀
𝑢1.

• For Dirichlet-Neumann boundary condition 𝑢(𝑥0) = 𝑢0 and 𝑢′
𝑥(𝑥1) = 𝑢′

1:

The re-parameterization is 𝑢(𝑥) = 𝐴(𝑥) + �̃�
(︁

ANN(𝑥) − ANN(𝑥1) + 𝑥0 −
(︀
𝑥1 − 𝑥0

)︀
ANN′

𝑥(𝑥1)
)︁

,

where 𝐴(𝑥) =
(︀
1 − �̃�

)︀
𝑢0 +

1

2
�̃�2

(︀
𝑥1 − 𝑥0

)︀
𝑢′
1.

• For Neumann-Dirichlet boundary condition 𝑢′
𝑥(𝑥0) = 𝑢′

0 and 𝑢(𝑥1) = 𝑢1:

The re-parameterization is 𝑢(𝑥) = 𝐴(𝑥)+
(︀
1−�̃�

)︀(︁
ANN(𝑥)−ANN(𝑥0)+𝑥1+

(︀
𝑥1−𝑥0

)︀
ANN′

𝑥(𝑥0)
)︁

,

where 𝐴(𝑥) = �̃�𝑢1 −
1

2

(︀
1 − �̃�

)︀2(︀
𝑥1 − 𝑥0

)︀
𝑢′
0.

• For Neumann-Neumann boundary condition 𝑢′
𝑥(𝑥0) = 𝑢′

0 and 𝑢′
𝑥(𝑥1) = 𝑢′

1:

The re-parameterization is 𝑢(𝑥) = 𝐴(𝑥) +
1

2
�̃�2

(︀
ANN(𝑥) − ANN(𝑥1) − 1

2
ANN′

𝑥(𝑥1)
(︀
𝑥1 −

𝑥0

)︀)︀
,+

1

2

(︀
1 − �̃�

)︀2(︀
ANN(𝑥) − ANN(𝑥0) +

1

2
ANN′

𝑥(𝑥0)
(︀
𝑥1 − 𝑥0

)︀)︀
, where 𝐴(𝑥) =

1

2
�̃�2

(︀
𝑥1 −

𝑥0

)︀
𝑢′
1 −

1

2

(︀
1 − �̃�

)︀2(︀
𝑥1 − 𝑥0

)︀
𝑢′
0.

Notations:

• �̃� =
𝑥− 𝑥0

𝑥1 − 𝑥0
,

• ANN is the neural network,

• and ANN′
𝑥 =

𝜕𝐴𝑁𝑁

𝜕𝑥
.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• x (torch.Tensor) – The 𝑥-coordinates of the samples; i.e., the spatial coordinates.

• additional_tensors (torch.Tensor) – additional tensors that will be passed by
enforce

Returns The re-parameterized output of the network.

Return type torch.Tensor

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.
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Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.conditions.EnsembleCondition(*sub_conditions, force=False)
Bases: neurodiffeq.conditions.BaseCondition

An ensemble condition that enforces sub-conditions on individual output units of the networks.

Parameters

• sub_conditions (BaseCondition) – Condition(s) to be ensemble’d.

• force (bool) – Whether or not to force ensembl’ing even when .enforce is overridden in
one of the sub-conditions.

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

parameterize(output_tensor, *input_tensors)
Re-parameterizes each column in output_tensor individually, using its corresponding sub-condition. This
is useful when solving differential equations with a single, multi-output network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network. Number of units
(.shape[1]) must equal number of sub-conditions.

• input_tensors (torch.Tensor) – Inputs to the neural network; i.e., sampled coordi-
nates; i.e., independent variables.

Returns The column-wise re-parameterized network output, concatenated across columns so
that it’s still one tensor.

Return type torch.Tensor

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.conditions.IBVP1D(x_min, x_max, t_min, t_min_val, x_min_val=None,
x_min_prime=None, x_max_val=None,
x_max_prime=None)

Bases: neurodiffeq.conditions.BaseCondition

4.3. neurodiffeq.conditions 45



neurodiffeq Documentation

An initial & boundary condition on a 1-D range where 𝑥 ∈ [𝑥0, 𝑥1] and time starts at 𝑡0. The conditions should
have the following parts:

• 𝑢(𝑥, 𝑡0) = 𝑢0(𝑥),

• 𝑢(𝑥0, 𝑡) = 𝑔(𝑡) or 𝑢′
𝑥(𝑥0, 𝑡) = 𝑝(𝑡),

• 𝑢(𝑥1, 𝑡) = ℎ(𝑡) or 𝑢′
𝑥(𝑥1, 𝑡) = 𝑞(𝑡),

where 𝑢′
𝑥 =

𝜕𝑢

𝜕𝑥
.

Parameters

• x_min (float) – The lower bound of x, the 𝑥0.

• x_max (float) – The upper bound of x, the 𝑥1.

• t_min (float) – The initial time, the 𝑡0.

• t_min_val (callable) – The initial condition, the 𝑢0(𝑥).

• x_min_val (callable, optional) – The Dirichlet boundary condition when 𝑥 =
𝑥0, the 𝑢(𝑥0, 𝑡), defaults to None.

• x_min_prime (callable, optional) – The Neumann boundary condition when
𝑥 = 𝑥0, the 𝑢′

𝑥(𝑥0, 𝑡), defaults to None.

• x_max_val (callable, optional) – The Dirichlet boundary condition when 𝑥 =
𝑥1, the 𝑢(𝑥1, 𝑡), defaults to None.

• x_max_prime (callable, optional) – The Neumann boundary condition when
𝑥 = 𝑥1, the 𝑢′

𝑥(𝑥1, 𝑡), defaults to None.

Raises NotImplementedError – When unimplemented boundary conditions are configured.

Note: This condition cannot be passed to neurodiffeq.conditions.EnsembleCondition unless
both boundaries uses Dirichlet conditions (by specifying only x_min_val and x_max_val) and force is
set to True in EnsembleCondition’s constructor.

enforce(net, x, t)
Enforces this condition on a network with inputs x and t

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• x (torch.Tensor) – The 𝑥-coordinates of the samples; i.e., the spatial coordinates.

• t (torch.Tensor) – The 𝑡-coordinates of the samples; i.e., the temporal coordinates.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

Note: This method overrides the default method of neurodiffeq.conditions.BaseCondition
. In general, you should avoid overriding enforce when implementing custom boundary conditions.

parameterize(u, x, t, *additional_tensors)
Re-parameterizes outputs such that the initial and boundary conditions are satisfied.

The Initial condition is always 𝑢(𝑥, 𝑡0) = 𝑢0(𝑥). There are four boundary conditions that are currently
implemented:
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• For Dirichlet-Dirichlet boundary condition 𝑢(𝑥0, 𝑡) = 𝑔(𝑡) and 𝑢(𝑥1, 𝑡) = ℎ(𝑡):

The re-parameterization is 𝑢(𝑥, 𝑡) = 𝐴(𝑥, 𝑡) + �̃�
(︀
1 − �̃�

)︀(︁
1 − 𝑒−𝑡

)︁
ANN(𝑥, 𝑡), where 𝐴(𝑥, 𝑡) =

𝑢0(𝑥) + �̃�
(︀
ℎ(𝑡) − ℎ(𝑡0)

)︀
+
(︀
1 − �̃�

)︀(︀
𝑔(𝑡) − 𝑔(𝑡0)

)︀
.

• For Dirichlet-Neumann boundary condition 𝑢(𝑥0, 𝑡) = 𝑔(𝑡) and 𝑢′
𝑥(𝑥1, 𝑡) = 𝑞(𝑡):

The re-parameterization is 𝑢(𝑥, 𝑡) = 𝐴(𝑥, 𝑡) + �̃�
(︁

1− 𝑒−𝑡
)︁(︁

ANN(𝑥, 𝑡)−
(︀
𝑥1 − 𝑥0

)︀
ANN′

𝑥(𝑥1, 𝑡)−

ANN(𝑥1, 𝑡)
)︁

, where 𝐴(𝑥, 𝑡) = 𝑢0(𝑥) +
(︀
𝑥− 𝑥0

)︀(︀
𝑞(𝑡) − 𝑞(𝑡0)

)︀
+
(︀
𝑔(𝑡) − 𝑔(𝑡0)

)︀
.

• For Neumann-Dirichlet boundary condition 𝑢′
𝑥(𝑥0, 𝑡) = 𝑝(𝑡) and 𝑢(𝑥1, 𝑡) = ℎ(𝑡):

The re-parameterization is 𝑢(𝑥, 𝑡) = 𝐴(𝑥, 𝑡) +
(︀
1 − �̃�

)︀(︁
1 − 𝑒−𝑡

)︁(︁
ANN(𝑥, 𝑡) −

(︀
𝑥1 −

𝑥0

)︀
ANN′

𝑥(𝑥0, 𝑡)−ANN(𝑥0, 𝑡)
)︁

, where 𝐴(𝑥, 𝑡) = 𝑢0(𝑥)+
(︀
𝑥1−𝑥

)︀(︀
𝑝(𝑡)−𝑝(𝑡0)

)︀
+
(︀
ℎ(𝑡)−ℎ(𝑡0)

)︀
.

• For Neumann-Neumann boundary condition 𝑢′
𝑥(𝑥0, 𝑡) = 𝑝(𝑡) and 𝑢′

𝑥(𝑥1, 𝑡) = 𝑞(𝑡)

The re-parameterization is 𝑢(𝑥, 𝑡) = 𝐴(𝑥, 𝑡) +
(︁

1 − 𝑒−𝑡
)︁(︁

ANN(𝑥, 𝑡) −
(︀
𝑥 − 𝑥0

)︀
ANN′

𝑥(𝑥0, 𝑡) +

1

2
�̃�2

(︀
𝑥1−𝑥0

)︀(︀
ANN′

𝑥(𝑥0, 𝑡)−ANN′
𝑥(𝑥1, 𝑡)

)︀)︁
, where 𝐴(𝑥, 𝑡) = 𝑢0(𝑥)− 1

2

(︀
1−�̃�

)︀2(︀
𝑥1−𝑥0

)︀(︀
𝑝(𝑡)−

𝑝(𝑡0)
)︀

+
1

2
�̃�2

(︀
𝑥1 − 𝑥0

)︀(︀
𝑞(𝑡) − 𝑞(𝑡0)

)︀
.

Notations:

• 𝑡 =
𝑡− 𝑡0
𝑡1 − 𝑡0

,

• �̃� =
𝑥− 𝑥0

𝑥1 − 𝑥0
,

• ANN is the neural network,

• and ANN′
𝑥 =

𝜕𝐴𝑁𝑁

𝜕𝑥
.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• x (torch.Tensor) – The 𝑥-coordinates of the samples; i.e., the spatial coordinates.

• t (torch.Tensor) – The 𝑡-coordinates of the samples; i.e., the temporal coordinates.

• additional_tensors (torch.Tensor) – additional tensors that will be passed by
enforce

Returns The re-parameterized output of the network.

Return type torch.Tensor

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.
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class neurodiffeq.conditions.IVP(t_0, u_0=None, u_0_prime=None)
Bases: neurodiffeq.conditions.BaseCondition

An initial value problem of one of the following forms:

• Dirichlet condition: 𝑢(𝑡0) = 𝑢0.

• Neumann condition:
𝜕𝑢

𝜕𝑡

⃒⃒⃒⃒
𝑡=𝑡0

= 𝑢′
0.

Parameters

• t_0 (float) – The initial time.

• u_0 (float) – The initial value of 𝑢. 𝑢(𝑡0) = 𝑢0.

• u_0_prime (float, optional) – The initial derivative of 𝑢 w.r.t. 𝑡.
𝜕𝑢

𝜕𝑡

⃒⃒⃒⃒
𝑡=𝑡0

= 𝑢′
0.

Defaults to None.

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

parameterize(output_tensor, t)
Re-parameterizes outputs such that the Dirichlet/Neumann condition is satisfied.

• For Dirichlet condition, the re-parameterization is 𝑢(𝑡) = 𝑢0 +
(︁

1 − 𝑒−(𝑡−𝑡0)
)︁

ANN(𝑡) where ANN

is the neural network.

• For Neumann condition, the re-parameterization is 𝑢(𝑡) = 𝑢0+(𝑡−𝑡0)𝑢′
0+

(︁
1 − 𝑒−(𝑡−𝑡0)

)︁2

ANN(𝑡)

where ANN is the neural network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• t (torch.Tensor) – Input to the neural network; i.e., sampled time-points; i.e., independent
variables.

Returns The re-parameterized output of the network.

Return type torch.Tensor

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.
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Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.conditions.InfDirichletBVPSpherical(r_0, f, g, order=1)
Bases: neurodiffeq.conditions.BaseCondition

Similar to neurodiffeq.conditions.DirichletBVPSpherical. but with 𝑟1 → +∞. Specifically,

• 𝑢(𝑟0, 𝜃, 𝜑) = 𝑓(𝜃, 𝜑),

• lim𝑟→+∞ 𝑢(𝑟, 𝜃, 𝜑) = 𝑔(𝜃, 𝜑).

Parameters

• r_0 (float) – The radius of the interior boundary. When 𝑟0 = 0, the interior boundary
collapses to a single point (center of the ball).

• f (callable) – The value of 𝑢 on the interior boundary. 𝑢(𝑟0, 𝜃, 𝜑) = 𝑓(𝜃, 𝜑).

• g (callable) – The value of 𝑢 at infinity. lim𝑟→+∞ 𝑢(𝑟, 𝜃, 𝜑) = 𝑔(𝜃, 𝜑).

• order (int or float) – The smallest 𝑘 such that lim𝑟→+∞ 𝑢(𝑟, 𝜃, 𝜑)𝑒−𝑘𝑟 = 0. De-
faults to 1.

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

parameterize(output_tensor, r, theta, phi)
Re-parameterizes outputs such that the Dirichlet condition is satisfied both at 𝑟0 and infinity. The re-
parameterization is

,

where ANN is the neural network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• r (torch.Tensor) – The radii (or 𝑟-component) of the inputs to the network.

• theta (torch.Tensor) – The co-latitudes (or 𝜃-component) of the inputs to the network.

• phi (torch.Tensor) – The longitudes (or 𝜑-component) of the inputs to the network.

Returns The re-parameterized output of the network.

Return type torch.Tensor

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.
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Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.conditions.InfDirichletBVPSphericalBasis(r_0, R_0,
R_inf, order=1,
max_degree=None)

Bases: neurodiffeq.conditions.BaseCondition

Similar to neurodiffeq.conditions.InfDirichletBVPSpherical. The only difference is this
condition is enforced on a neural net that only takes in 𝑟 and returns the spherical harmonic coefficients R(r). We
constrain the coefficients 𝑅𝑘(𝑟) in 𝑢(𝑟, 𝜃, 𝜑) =

∑︀
𝑘 𝑅𝑘(𝑟)𝑌𝑘(𝜃, 𝜑), where

{︀
𝑌𝑘(𝜃, 𝜑)

}︀𝐾

𝑘=1
can be any spherical

function basis. A recommended choice is the real spherical harmonics 𝑌 𝑚
𝑙 (𝜃, 𝜑), where 𝑙 is the degree of the

spherical harmonics and 𝑚 is the order of the spherical harmonics.

The boundary conditions are: R(𝑟0) = R0 and lim𝑟0→+∞ R(𝑟) = R1, where R is a vector whose components
are

{︀
𝑅𝑘

}︀𝐾

𝑘=1
.

Parameters

• r_0 (float) – The radius of the interior boundary. When r_0 = 0, the interior boundary is
collapsed to a single point (center of the ball).

• R_0 (torch.Tensor) – The value of harmonic coefficients 𝑅 on the interior boundary.
𝑅(𝑟0) = 𝑅0.

• R_inf (torch.Tensor) – The value of harmonic coefficients 𝑅 at infinity. lim𝑟→+∞ 𝑅(𝑟) =
𝑅∞.

• order (int or float) – The smallest 𝑘 that guarantees lim𝑟→+∞ 𝑅(𝑟)𝑒−𝑘𝑟 = 0.
Defaults to 1.

• max_degree (int) – [DEPRECATED] Highest degree when using spherical harmonics.

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

parameterize(output_tensor, r)
Re-parameterizes outputs such that the Dirichlet condition is satisfied at both 𝑟0 and infinity.

The re-parameterization is

,

where ANN is the neural network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• r (torch.Tensor) – The radii (or 𝑟-component) of the inputs to the network.
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Returns The re-parameterized output of the network.

Return type torch.Tensor

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.conditions.IrregularBoundaryCondition
Bases: neurodiffeq.conditions.BaseCondition

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

in_domain(*coordinates)
Given the coordinates (numpy.ndarray), the methods returns an boolean array indicating whether the points
lie within the domain.

Parameters coordinates (numpy.ndarray) – Input tensors, each with shape (n_samples, 1).

Returns Whether each point lies within the domain.

Return type numpy.ndarray

Note:

• This method is meant to be used by monitors for irregular domain visualization.

parameterize(output_tensor, *input_tensors)
Re-parameterizes output(s) of a network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• input_tensors (torch.Tensor) – Inputs to the neural network; i.e., sampled coordi-
nates; i.e., independent variables.

Returns The re-parameterized output of the network.

Return type torch.Tensor

Note: This method is abstract for BaseCondition

4.3. neurodiffeq.conditions 51



neurodiffeq Documentation

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.conditions.NoCondition
Bases: neurodiffeq.conditions.BaseCondition

A polymorphic condition where no re-parameterization will be performed.

Note: This condition is called polymorphic because it can be enforced on networks of arbitrary input/output
sizes.

enforce(net, *coordinates)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

parameterize(output_tensor, *input_tensors)
Performs no re-parameterization, or identity parameterization, in this case.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• input_tensors (torch.Tensor) – Inputs to the neural network; i.e., sampled coordi-
nates; i.e., independent variables.

Returns The re-parameterized output of the network.

Return type torch.Tensor

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.
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4.4 neurodiffeq.solvers

class neurodiffeq.solvers.BaseSolution(nets, conditions)
Bases: abc.ABC

A solution to a PDE/ODE (system).

Parameters

• nets (list[torch.nn.Module] or torch.nn.Module) – The neural networks that approximate
the PDE/ODE solution.

– If nets is a list of torch.nn.Module, it should have the same length with
conditions

– If nets is a single torch.nn.Module, it should have as many output units as length
of conditions

• conditions (list[neurodiffeq.conditions.BaseCondition]) – A list of conditions that
should be enforced on the PDE/ODE solution. conditions should have a length equal to
the number of dependent variables in the ODE/PDE system.

class neurodiffeq.solvers.BaseSolver(diff_eqs, conditions, nets=None,
train_generator=None, valid_generator=None, ana-
lytic_solutions=None, optimizer=None, loss_fn=None,
n_batches_train=1, n_batches_valid=4, metrics=None,
n_input_units=None, n_output_units=None, shuf-
fle=None, batch_size=None)

Bases: abc.ABC, neurodiffeq.solvers_utils.PretrainedSolver

A class for solving ODE/PDE systems.

Parameters

• diff_eqs (callable) – The differential equation system to solve, which maps a tuple of
coordinates to a tuple of ODE/PDE residuals. Both the coordinates and ODE/PDE residuals
must have shape (-1, 1).

• conditions (list[neurodiffeq.conditions.BaseCondition]) – List of boundary conditions
for each target function.

• nets (list[torch.nn.Module], optional) – List of neural networks for parameterized solution.
If provided, length must equal that of conditions.

• train_generator (neurodiffeq.generators.BaseGenerator, required) – A generator for
sampling training points. It must provide a .get_examples() method and a .size field.

• valid_generator (neurodiffeq.generators.BaseGenerator, required) – A generator for
sampling validation points. It must provide a .get_examples() method and a .size field.

• analytic_solutions (callable, optional) – [DEPRECATED] Pass
metrics instead. The analytical solutions to be compared with neural net solutions. It
maps a tuple of coordinates to a tuple of function values. The output shape should match
that of networks.

• optimizer (torch.nn.optim.Optimizer, optional) – The optimizer to be used for training.

• loss_fn (str or torch.nn.moduesl.loss._Loss or callable) – The loss function used for train-
ing.

– If a str, must be present in the keys of neurodiffeq.losses._losses.

– If a torch.nn.modules.loss._Loss instance, just pass the instance.
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– If any other callable, it must map A) a residual tensor (shape (n_points, n_equations)), B)
a function values tuple (length n_funcs, each element a tensor of shape (n_points, 1)), and
C) a coordinate values tuple (length n_coords, each element a tensor of shape (n_coords,
1) to a tensor of empty shape (i.e. a scalar). The returned tensor must be connected to the
computational graph, so that backpropagation can be performed.

• n_batches_train (int, optional) – Number of batches to train in every epoch,
where batch-size equals train_generator.size. Defaults to 1.

• n_batches_valid (int, optional) – Number of batches to validate in every epoch,
where batch-size equals valid_generator.size. Defaults to 4.

• metrics (dict, optional) – Additional metrics to be logged (besides loss).
metrics should be a dict where

– Keys are metric names (e.g. ‘analytic_mse’);

– Values are functions (callables) that computes the metric value. These functions must
accept the same input as the differential equation diff_eq.

• n_input_units (int, required) – Number of input units for each neural network.
Ignored if nets is specified.

• n_output_units (int, required) – Number of output units for each neural net-
work. Ignored if nets is specified.

• batch_size (int) – [DEPRECATED and IGNORED] Each batch will use all samples
generated. Please specify n_batches_train and n_batches_valid instead.

• shuffle (bool) – [DEPRECATED and IGNORED] Shuffling should be performed by
generators.

additional_loss(residual, funcs, coords)
Additional loss terms for training. This method is to be overridden by subclasses. This method can use
any of the internal variables: self.nets, self.conditions, self.global_epoch, etc.

Parameters

• residual (torch.Tensor) – Residual tensor of differential equation. It has shape
(N_SAMPLES, N_EQUATIONS)

• funcs (List[torch.Tensor]) – Outputs of the networks after parameterization.
There are len(nets) entries in total. Each entry is a tensor of shape (N_SAMPLES,
N_OUTPUT_UNITS).

• coords (List[torch.Tensor]) – Inputs to the networks; a.k.a. the spatio-temporal
coordinates of the system. There are N_COORDS entries in total. Each entry is a tensor of
shape (N_SAMPLES, 1).

Returns Additional loss. Must be a torch.Tensor of empty shape (scalar).

Return type torch.Tensor

compute_func_val(net, cond, *coordinates)
Compute the function value evaluated on the points specified by coordinates.

Parameters

• net (torch.nn.Module) – The network to be parameterized and evaluated.

• cond (neurodiffeq.conditions.BaseCondition) – The condition (a.k.a. parameterization)
for the network.

54 Chapter 4. API Reference



neurodiffeq Documentation

• coordinates (tuple[torch.Tensor]) – A tuple of coordinate components, each
with shape = (-1, 1).

Returns Function values at the sampled points.

Return type torch.Tensor

fit(max_epochs, callbacks=(), tqdm_file=<_io.TextIOWrapper name=’<stderr>’ mode=’w’
encoding=’utf-8’>, **kwargs)
Run multiple epochs of training and validation, update best loss at the end of each epoch.

If callbacks is passed, callbacks are run, one at a time, after training, validating and updating best
model.

Parameters

• max_epochs (int) – Number of epochs to run.

• callbacks – A list of callback functions. Each function should accept the solver
instance itself as its only argument.

• tqdm_file (io.StringIO or _io.TextIOWrapper) – File to write tqdm
progress bar. If set to None, tqdm is not used at all. Defaults to sys.stderr.

Rtype callbacks list[callable]

Note:

1. This method does not return solution, which is done in the .get_solution() method.

2. A callback cb(solver) can set solver._stop_training to True to perform early stopping.

get_internals(var_names=None, return_type=’list’)
Return internal variable(s) of the solver

• If var_names == ‘all’, return all internal variables as a dict.

• If var_names is single str, return the corresponding variables.

• If var_names is a list and return_type == ‘list’, return corresponding internal variables as a list.

• If var_names is a list and return_type == ‘dict’, return a dict with keys in var_names.

Parameters

• var_names (str or list[str]) – An internal variable name or a list of internal
variable names.

• return_type (str) – {‘list’, ‘dict’}; Ignored if var_names is a string.

Returns A single variable, or a list/dict of internal variables as indicated above.

Return type list or dict or any

get_residuals(*coords, to_numpy=False, best=True, no_reshape=False)
Get the residuals of the differential equation (or system of differential equations) evaluated at given points.

Parameters

• coords (tuple[torch.Tensor] or tuple[np.ndarray]) – The coordinate
values where the residual(s) shall be evaluated. If numpy arrays are passed, the method
implicitly creates torch tensors with corresponding values.

• to_numpy (bool) – Whether to return numpy arrays. Defaults to False.
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• best (bool) – If set to False, the network from the most recent epoch will be used to
evaluate the residuals. If set to True, the network from the epoch with the lowest validation
loss will be used to evaluate the residuals. Defaults to True.

• no_reshape (bool) – If set to True, no reshaping will be performed on output. Defaults
to False.

Returns The residuals evaluated at given points. If there is only one equation in the differential
equation system, a single torch tensor (or numpy array) will be returned. If there are multiple
equations, a list of torch tensors (or numpy arrays) will be returned. The returned shape will
be the same as the first input coordinate, unless no_reshape is set to True. Note that the return
value will always be torch tensors (even if coords are numpy arrays) unless to_numpy is
explicitly set to True.

Return type list[torch.Tensor or numpy.array] or torch.Tensor or numpy.array

get_solution(copy=True, best=True)
Get a (callable) solution object. See this usage example:

solution = solver.get_solution()
point_coords = train_generator.get_examples()
value_at_points = solution(point_coords)

Parameters

• copy (bool) – Whether to make a copy of the networks so that subsequent training
doesn’t affect the solution; Defaults to True.

• best (bool) – Whether to return the solution with lowest loss instead of the solution
after the last epoch. Defaults to True.

Returns A solution object which can be called. To evaluate the solution on certain points, you
should pass the coordinates vector(s) to the returned solution.

Return type BaseSolution

global_epoch
Global epoch count, always equal to the length of train loss history.

Returns Number of training epochs that have been run.

Return type int

run_train_epoch()
Run a training epoch, update history, and perform gradient descent.

run_valid_epoch()
Run a validation epoch and update history.

class neurodiffeq.solvers.BundleSolution1D(nets, conditions)
Bases: neurodiffeq.solvers.BaseSolution

class neurodiffeq.solvers.BundleSolver1D(ode_system, conditions, t_min, t_max,
theta_min=None, theta_max=None, nets=None,
train_generator=None, valid_generator=None,
analytic_solutions=None, optimizer=None,
loss_fn=None, n_batches_train=1,
n_batches_valid=4, metrics=None,
n_output_units=1, batch_size=None, shuf-
fle=None)

Bases: neurodiffeq.solvers.BaseSolver
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A solver class for solving ODEs (single-input differential equations) , or a bundle of ODEs for different values
of its parameters and/or conditions

Parameters

• ode_system (callable) – The ODE system to solve, which maps a torch.Tensor or a
tuple of torch.Tensors, to a tuple of ODE residuals, both the input and output must have
shape (n_samples, 1).

• conditions (list[neurodiffeq.conditions.BaseCondition]) – List of conditions for each
target function.

• t_min (float, optional) – Lower bound of input (start time). Ignored if
train_generator and valid_generator are both set.

• t_max (float, optional) – Upper bound of input (start time). Ignored if
train_generator and valid_generator are both set.

• theta_min (float or tuple, optional) – Lower bound of input (parameters
and/or conditions). If conditions are included in the bundle, the order should match the
one inferred by the values of the bundle_conditions input in the neurodiffeq.
conditions.BundleIVP. Defaults to None. Ignored if train_generator and
valid_generator are both set.

• theta_max (float or tuple, optional) – Upper bound of input (parameters
and/or conditions). If conditions are included in the bundle, the order should match the
one inferred by the values of the bundle_conditions input in the neurodiffeq.
conditions.BundleIVP. Defaults to None. Ignored if train_generator and
valid_generator are both set.

• nets (list[torch.nn.Module], optional) – List of neural networks for param-
eterized solution. If provided, length of nets must equal that of conditions

• train_generator (neurodiffeq.generators.BaseGenerator, optional) – Generator for
sampling training points, which must provide a .get_examples()method and a .size
field. train_generator must be specified if t_min and t_max are not set.

• valid_generator (neurodiffeq.generators.BaseGenerator, optional) – Generator for
sampling validation points, which must provide a .get_examples() method and a .
size field. valid_generator must be specified if t_min and t_max are not set.

• analytic_solutions (callable, optional) – Analytical solutions to be com-
pared with neural net solutions. It maps a torch.Tensor to a tuple of function values. Output
shape should match that of nets.

• optimizer (torch.nn.optim.Optimizer, optional) – Optimizer to be used for
training. Defaults to a torch.optim.Adam instance that trains on all parameters of
nets.

• loss_fn (str or torch.nn.moduesl.loss._Loss or callable) – The loss function used for train-
ing.

– If a str, must be present in the keys of neurodiffeq.losses._losses.

– If a torch.nn.modules.loss._Loss instance, just pass the instance.

– If any other callable, it must map A) a residual tensor (shape (n_points, n_equations)), B)
a function values tuple (length n_funcs, each element a tensor of shape (n_points, 1)), and
C) a coordinate values tuple (length n_coords, each element a tensor of shape (n_coords,
1) to a tensor of empty shape (i.e. a scalar). The returned tensor must be connected to the
computational graph, so that backpropagation can be performed.
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• n_batches_train (int, optional) – Number of batches to train in every epoch,
where batch-size equals train_generator.size. Defaults to 1.

• n_batches_valid (int, optional) – Number of batches to validate in every epoch,
where batch-size equals valid_generator.size. Defaults to 4.

• metrics (dict[str, callable], optional) – Additional metrics to be logged
(besides loss). metrics should be a dict where

– Keys are metric names (e.g. ‘analytic_mse’);

– Values are functions (callables) that computes the metric value. These functions must
accept the same input as the differential equation ode_system.

• n_output_units (int, optional) – Number of output units for each neural net-
work. Ignored if nets is specified. Defaults to 1.

• batch_size (int) – [DEPRECATED and IGNORED] Each batch will use all samples
generated. Please specify n_batches_train and n_batches_valid instead.

• shuffle (bool) – [DEPRECATED and IGNORED] Shuffling should be performed by
generators.

additional_loss(residual, funcs, coords)
Additional loss terms for training. This method is to be overridden by subclasses. This method can use
any of the internal variables: self.nets, self.conditions, self.global_epoch, etc.

Parameters

• residual (torch.Tensor) – Residual tensor of differential equation. It has shape
(N_SAMPLES, N_EQUATIONS)

• funcs (List[torch.Tensor]) – Outputs of the networks after parameterization.
There are len(nets) entries in total. Each entry is a tensor of shape (N_SAMPLES,
N_OUTPUT_UNITS).

• coords (List[torch.Tensor]) – Inputs to the networks; a.k.a. the spatio-temporal
coordinates of the system. There are N_COORDS entries in total. Each entry is a tensor of
shape (N_SAMPLES, 1).

Returns Additional loss. Must be a torch.Tensor of empty shape (scalar).

Return type torch.Tensor

compute_func_val(net, cond, *coordinates)
Compute the function value evaluated on the points specified by coordinates.

Parameters

• net (torch.nn.Module) – The network to be parameterized and evaluated.

• cond (neurodiffeq.conditions.BaseCondition) – The condition (a.k.a. parameterization)
for the network.

• coordinates (tuple[torch.Tensor]) – A tuple of coordinate components, each
with shape = (-1, 1).

Returns Function values at the sampled points.

Return type torch.Tensor

fit(max_epochs, callbacks=(), tqdm_file=<_io.TextIOWrapper name=’<stderr>’ mode=’w’
encoding=’utf-8’>, **kwargs)
Run multiple epochs of training and validation, update best loss at the end of each epoch.
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If callbacks is passed, callbacks are run, one at a time, after training, validating and updating best
model.

Parameters

• max_epochs (int) – Number of epochs to run.

• callbacks – A list of callback functions. Each function should accept the solver
instance itself as its only argument.

• tqdm_file (io.StringIO or _io.TextIOWrapper) – File to write tqdm
progress bar. If set to None, tqdm is not used at all. Defaults to sys.stderr.

Rtype callbacks list[callable]

Note:

1. This method does not return solution, which is done in the .get_solution() method.

2. A callback cb(solver) can set solver._stop_training to True to perform early stopping.

get_internals(var_names=None, return_type=’list’)
Return internal variable(s) of the solver

• If var_names == ‘all’, return all internal variables as a dict.

• If var_names is single str, return the corresponding variables.

• If var_names is a list and return_type == ‘list’, return corresponding internal variables as a list.

• If var_names is a list and return_type == ‘dict’, return a dict with keys in var_names.

Parameters

• var_names (str or list[str]) – An internal variable name or a list of internal
variable names.

• return_type (str) – {‘list’, ‘dict’}; Ignored if var_names is a string.

Returns A single variable, or a list/dict of internal variables as indicated above.

Return type list or dict or any

get_residuals(*coords, to_numpy=False, best=True, no_reshape=False)
Get the residuals of the differential equation (or system of differential equations) evaluated at given points.

Parameters

• coords (tuple[torch.Tensor] or tuple[np.ndarray]) – The coordinate
values where the residual(s) shall be evaluated. If numpy arrays are passed, the method
implicitly creates torch tensors with corresponding values.

• to_numpy (bool) – Whether to return numpy arrays. Defaults to False.

• best (bool) – If set to False, the network from the most recent epoch will be used to
evaluate the residuals. If set to True, the network from the epoch with the lowest validation
loss will be used to evaluate the residuals. Defaults to True.

• no_reshape (bool) – If set to True, no reshaping will be performed on output. Defaults
to False.
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Returns The residuals evaluated at given points. If there is only one equation in the differential
equation system, a single torch tensor (or numpy array) will be returned. If there are multiple
equations, a list of torch tensors (or numpy arrays) will be returned. The returned shape will
be the same as the first input coordinate, unless no_reshape is set to True. Note that the return
value will always be torch tensors (even if coords are numpy arrays) unless to_numpy is
explicitly set to True.

Return type list[torch.Tensor or numpy.array] or torch.Tensor or numpy.array

get_solution(copy=True, best=True)
Get a (callable) solution object. See this usage example:

solution = solver.get_solution()
point_coords = train_generator.get_examples()
value_at_points = solution(point_coords)

Parameters

• copy (bool) – Whether to make a copy of the networks so that subsequent training
doesn’t affect the solution; Defaults to True.

• best (bool) – Whether to return the solution with lowest loss instead of the solution
after the last epoch. Defaults to True.

Returns A solution object which can be called. To evaluate the solution on certain points, you
should pass the coordinates vector(s) to the returned solution.

Return type BaseSolution

global_epoch
Global epoch count, always equal to the length of train loss history.

Returns Number of training epochs that have been run.

Return type int

run_train_epoch()
Run a training epoch, update history, and perform gradient descent.

run_valid_epoch()
Run a validation epoch and update history.

class neurodiffeq.solvers.GenericSolution(nets, conditions)
Bases: neurodiffeq.solvers.BaseSolution

class neurodiffeq.solvers.GenericSolver(diff_eqs, conditions, nets=None,
train_generator=None, valid_generator=None,
analytic_solutions=None, optimizer=None,
loss_fn=None, n_batches_train=1,
n_batches_valid=4, metrics=None,
n_input_units=None, n_output_units=None,
shuffle=None, batch_size=None)

Bases: neurodiffeq.solvers.BaseSolver

additional_loss(residual, funcs, coords)
Additional loss terms for training. This method is to be overridden by subclasses. This method can use
any of the internal variables: self.nets, self.conditions, self.global_epoch, etc.

Parameters

• residual (torch.Tensor) – Residual tensor of differential equation. It has shape
(N_SAMPLES, N_EQUATIONS)
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• funcs (List[torch.Tensor]) – Outputs of the networks after parameterization.
There are len(nets) entries in total. Each entry is a tensor of shape (N_SAMPLES,
N_OUTPUT_UNITS).

• coords (List[torch.Tensor]) – Inputs to the networks; a.k.a. the spatio-temporal
coordinates of the system. There are N_COORDS entries in total. Each entry is a tensor of
shape (N_SAMPLES, 1).

Returns Additional loss. Must be a torch.Tensor of empty shape (scalar).

Return type torch.Tensor

compute_func_val(net, cond, *coordinates)
Compute the function value evaluated on the points specified by coordinates.

Parameters

• net (torch.nn.Module) – The network to be parameterized and evaluated.

• cond (neurodiffeq.conditions.BaseCondition) – The condition (a.k.a. parameterization)
for the network.

• coordinates (tuple[torch.Tensor]) – A tuple of coordinate components, each
with shape = (-1, 1).

Returns Function values at the sampled points.

Return type torch.Tensor

fit(max_epochs, callbacks=(), tqdm_file=<_io.TextIOWrapper name=’<stderr>’ mode=’w’
encoding=’utf-8’>, **kwargs)
Run multiple epochs of training and validation, update best loss at the end of each epoch.

If callbacks is passed, callbacks are run, one at a time, after training, validating and updating best
model.

Parameters

• max_epochs (int) – Number of epochs to run.

• callbacks – A list of callback functions. Each function should accept the solver
instance itself as its only argument.

• tqdm_file (io.StringIO or _io.TextIOWrapper) – File to write tqdm
progress bar. If set to None, tqdm is not used at all. Defaults to sys.stderr.

Rtype callbacks list[callable]

Note:

1. This method does not return solution, which is done in the .get_solution() method.

2. A callback cb(solver) can set solver._stop_training to True to perform early stopping.

get_internals(var_names=None, return_type=’list’)
Return internal variable(s) of the solver

• If var_names == ‘all’, return all internal variables as a dict.

• If var_names is single str, return the corresponding variables.

• If var_names is a list and return_type == ‘list’, return corresponding internal variables as a list.

• If var_names is a list and return_type == ‘dict’, return a dict with keys in var_names.
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Parameters

• var_names (str or list[str]) – An internal variable name or a list of internal
variable names.

• return_type (str) – {‘list’, ‘dict’}; Ignored if var_names is a string.

Returns A single variable, or a list/dict of internal variables as indicated above.

Return type list or dict or any

get_residuals(*coords, to_numpy=False, best=True, no_reshape=False)
Get the residuals of the differential equation (or system of differential equations) evaluated at given points.

Parameters

• coords (tuple[torch.Tensor] or tuple[np.ndarray]) – The coordinate
values where the residual(s) shall be evaluated. If numpy arrays are passed, the method
implicitly creates torch tensors with corresponding values.

• to_numpy (bool) – Whether to return numpy arrays. Defaults to False.

• best (bool) – If set to False, the network from the most recent epoch will be used to
evaluate the residuals. If set to True, the network from the epoch with the lowest validation
loss will be used to evaluate the residuals. Defaults to True.

• no_reshape (bool) – If set to True, no reshaping will be performed on output. Defaults
to False.

Returns The residuals evaluated at given points. If there is only one equation in the differential
equation system, a single torch tensor (or numpy array) will be returned. If there are multiple
equations, a list of torch tensors (or numpy arrays) will be returned. The returned shape will
be the same as the first input coordinate, unless no_reshape is set to True. Note that the return
value will always be torch tensors (even if coords are numpy arrays) unless to_numpy is
explicitly set to True.

Return type list[torch.Tensor or numpy.array] or torch.Tensor or numpy.array

get_solution(copy=True, best=True)
Get a (callable) solution object. See this usage example:

solution = solver.get_solution()
point_coords = train_generator.get_examples()
value_at_points = solution(point_coords)

Parameters

• copy (bool) – Whether to make a copy of the networks so that subsequent training
doesn’t affect the solution; Defaults to True.

• best (bool) – Whether to return the solution with lowest loss instead of the solution
after the last epoch. Defaults to True.

Returns A solution object which can be called. To evaluate the solution on certain points, you
should pass the coordinates vector(s) to the returned solution.

Return type BaseSolution

global_epoch
Global epoch count, always equal to the length of train loss history.

Returns Number of training epochs that have been run.
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Return type int

run_train_epoch()
Run a training epoch, update history, and perform gradient descent.

run_valid_epoch()
Run a validation epoch and update history.

class neurodiffeq.solvers.Solution1D(nets, conditions)
Bases: neurodiffeq.solvers.BaseSolution

class neurodiffeq.solvers.Solution2D(nets, conditions)
Bases: neurodiffeq.solvers.BaseSolution

class neurodiffeq.solvers.SolutionSpherical(nets, conditions)
Bases: neurodiffeq.solvers.BaseSolution

class neurodiffeq.solvers.SolutionSphericalHarmonics(nets, conditions,
max_degree=None, har-
monics_fn=None)

Bases: neurodiffeq.solvers.SolutionSpherical

A solution to a PDE (system) in spherical coordinates.

Parameters

• nets (list[torch.nn.Module]) – List of networks that takes in radius tensor and outputs the
coefficients of spherical harmonics.

• conditions (list[neurodiffeq.conditions.BaseCondition]) – List of conditions to be en-
forced on each nets; must be of the same length as nets.

• harmonics_fn (callable) – Mapping from 𝜃 and 𝜑 to basis functions, e.g., spherical
harmonics.

• max_degree (int) – DEPRECATED and SUPERSEDED by harmonics_fn. High-
est used for the harmonic basis.

class neurodiffeq.solvers.Solver1D(ode_system, conditions, t_min=None,
t_max=None, nets=None, train_generator=None,
valid_generator=None, analytic_solutions=None,
optimizer=None, loss_fn=None, n_batches_train=1,
n_batches_valid=4, metrics=None, n_output_units=1,
batch_size=None, shuffle=None)

Bases: neurodiffeq.solvers.BaseSolver

A solver class for solving ODEs (single-input differential equations)

Parameters

• ode_system (callable) – The ODE system to solve, which maps a torch.Tensor to a
tuple of ODE residuals, both the input and output must have shape (n_samples, 1).

• conditions (list[neurodiffeq.conditions.BaseCondition]) – List of conditions for each
target function.

• t_min (float, optional) – Lower bound of input (start time). Ignored if
train_generator and valid_generator are both set.

• t_max (float, optional) – Upper bound of input (start time). Ignored if
train_generator and valid_generator are both set.

• nets (list[torch.nn.Module], optional) – List of neural networks for param-
eterized solution. If provided, length of nets must equal that of conditions
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• train_generator (neurodiffeq.generators.BaseGenerator, optional) – Generator for
sampling training points, which must provide a .get_examples()method and a .size
field. train_generator must be specified if t_min and t_max are not set.

• valid_generator (neurodiffeq.generators.BaseGenerator, optional) – Generator for
sampling validation points, which must provide a .get_examples() method and a .
size field. valid_generator must be specified if t_min and t_max are not set.

• analytic_solutions (callable, optional) – Analytical solutions to be com-
pared with neural net solutions. It maps a torch.Tensor to a tuple of function values. Output
shape should match that of nets.

• optimizer (torch.nn.optim.Optimizer, optional) – Optimizer to be used for
training. Defaults to a torch.optim.Adam instance that trains on all parameters of
nets.

• loss_fn (str or torch.nn.moduesl.loss._Loss or callable) – The loss function used for train-
ing.

– If a str, must be present in the keys of neurodiffeq.losses._losses.

– If a torch.nn.modules.loss._Loss instance, just pass the instance.

– If any other callable, it must map A) a residual tensor (shape (n_points, n_equations)), B)
a function values tuple (length n_funcs, each element a tensor of shape (n_points, 1)), and
C) a coordinate values tuple (length n_coords, each element a tensor of shape (n_coords,
1) to a tensor of empty shape (i.e. a scalar). The returned tensor must be connected to the
computational graph, so that backpropagation can be performed.

• n_batches_train (int, optional) – Number of batches to train in every epoch,
where batch-size equals train_generator.size. Defaults to 1.

• n_batches_valid (int, optional) – Number of batches to validate in every epoch,
where batch-size equals valid_generator.size. Defaults to 4.

• metrics (dict[str, callable], optional) – Additional metrics to be logged
(besides loss). metrics should be a dict where

– Keys are metric names (e.g. ‘analytic_mse’);

– Values are functions (callables) that computes the metric value. These functions must
accept the same input as the differential equation ode_system.

• n_output_units (int, optional) – Number of output units for each neural net-
work. Ignored if nets is specified. Defaults to 1.

• batch_size (int) – [DEPRECATED and IGNORED] Each batch will use all samples
generated. Please specify n_batches_train and n_batches_valid instead.

• shuffle (bool) – [DEPRECATED and IGNORED] Shuffling should be performed by
generators.

additional_loss(residual, funcs, coords)
Additional loss terms for training. This method is to be overridden by subclasses. This method can use
any of the internal variables: self.nets, self.conditions, self.global_epoch, etc.

Parameters

• residual (torch.Tensor) – Residual tensor of differential equation. It has shape
(N_SAMPLES, N_EQUATIONS)
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• funcs (List[torch.Tensor]) – Outputs of the networks after parameterization.
There are len(nets) entries in total. Each entry is a tensor of shape (N_SAMPLES,
N_OUTPUT_UNITS).

• coords (List[torch.Tensor]) – Inputs to the networks; a.k.a. the spatio-temporal
coordinates of the system. There are N_COORDS entries in total. Each entry is a tensor of
shape (N_SAMPLES, 1).

Returns Additional loss. Must be a torch.Tensor of empty shape (scalar).

Return type torch.Tensor

compute_func_val(net, cond, *coordinates)
Compute the function value evaluated on the points specified by coordinates.

Parameters

• net (torch.nn.Module) – The network to be parameterized and evaluated.

• cond (neurodiffeq.conditions.BaseCondition) – The condition (a.k.a. parameterization)
for the network.

• coordinates (tuple[torch.Tensor]) – A tuple of coordinate components, each
with shape = (-1, 1).

Returns Function values at the sampled points.

Return type torch.Tensor

fit(max_epochs, callbacks=(), tqdm_file=<_io.TextIOWrapper name=’<stderr>’ mode=’w’
encoding=’utf-8’>, **kwargs)
Run multiple epochs of training and validation, update best loss at the end of each epoch.

If callbacks is passed, callbacks are run, one at a time, after training, validating and updating best
model.

Parameters

• max_epochs (int) – Number of epochs to run.

• callbacks – A list of callback functions. Each function should accept the solver
instance itself as its only argument.

• tqdm_file (io.StringIO or _io.TextIOWrapper) – File to write tqdm
progress bar. If set to None, tqdm is not used at all. Defaults to sys.stderr.

Rtype callbacks list[callable]

Note:

1. This method does not return solution, which is done in the .get_solution() method.

2. A callback cb(solver) can set solver._stop_training to True to perform early stopping.

get_internals(var_names=None, return_type=’list’)
Return internal variable(s) of the solver

• If var_names == ‘all’, return all internal variables as a dict.

• If var_names is single str, return the corresponding variables.

• If var_names is a list and return_type == ‘list’, return corresponding internal variables as a list.

• If var_names is a list and return_type == ‘dict’, return a dict with keys in var_names.
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Parameters

• var_names (str or list[str]) – An internal variable name or a list of internal
variable names.

• return_type (str) – {‘list’, ‘dict’}; Ignored if var_names is a string.

Returns A single variable, or a list/dict of internal variables as indicated above.

Return type list or dict or any

get_residuals(*coords, to_numpy=False, best=True, no_reshape=False)
Get the residuals of the differential equation (or system of differential equations) evaluated at given points.

Parameters

• coords (tuple[torch.Tensor] or tuple[np.ndarray]) – The coordinate
values where the residual(s) shall be evaluated. If numpy arrays are passed, the method
implicitly creates torch tensors with corresponding values.

• to_numpy (bool) – Whether to return numpy arrays. Defaults to False.

• best (bool) – If set to False, the network from the most recent epoch will be used to
evaluate the residuals. If set to True, the network from the epoch with the lowest validation
loss will be used to evaluate the residuals. Defaults to True.

• no_reshape (bool) – If set to True, no reshaping will be performed on output. Defaults
to False.

Returns The residuals evaluated at given points. If there is only one equation in the differential
equation system, a single torch tensor (or numpy array) will be returned. If there are multiple
equations, a list of torch tensors (or numpy arrays) will be returned. The returned shape will
be the same as the first input coordinate, unless no_reshape is set to True. Note that the return
value will always be torch tensors (even if coords are numpy arrays) unless to_numpy is
explicitly set to True.

Return type list[torch.Tensor or numpy.array] or torch.Tensor or numpy.array

get_solution(copy=True, best=True)
Get a (callable) solution object. See this usage example:

solution = solver.get_solution()
point_coords = train_generator.get_examples()
value_at_points = solution(point_coords)

Parameters

• copy (bool) – Whether to make a copy of the networks so that subsequent training
doesn’t affect the solution; Defaults to True.

• best (bool) – Whether to return the solution with lowest loss instead of the solution
after the last epoch. Defaults to True.

Returns A solution object which can be called. To evaluate the solution on certain points, you
should pass the coordinates vector(s) to the returned solution.

Return type BaseSolution

global_epoch
Global epoch count, always equal to the length of train loss history.

Returns Number of training epochs that have been run.
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Return type int

run_train_epoch()
Run a training epoch, update history, and perform gradient descent.

run_valid_epoch()
Run a validation epoch and update history.

class neurodiffeq.solvers.Solver2D(pde_system, conditions, xy_min=None,
xy_max=None, nets=None, train_generator=None,
valid_generator=None, analytic_solutions=None,
optimizer=None, loss_fn=None, n_batches_train=1,
n_batches_valid=4, metrics=None, n_output_units=1,
batch_size=None, shuffle=None)

Bases: neurodiffeq.solvers.BaseSolver

A solver class for solving PDEs in 2 dimensions.

Parameters

• pde_system (callable) – The PDE system to solve, which maps two torch.
Tensor``s to PDE residuals (``tuple[torch.Tensor]), both the input
and output must have shape (n_samples, 1).

• conditions (list[neurodiffeq.conditions.BaseCondition]) – List of conditions for each
target function.

• xy_min (tuple[float, float], optional) – The lower bound of 2 dimensions.
If we only care about 𝑥 ≥ 𝑥0 and 𝑦 ≥ 𝑦0, then xy_min is (x_0, y_0). Only needed when
train_generator or valid_generator are not specified. Defaults to None

• xy_max (tuple[float, float], optional) – The upper bound of 2 dimensions.
If we only care about 𝑥 ≤ 𝑥1 and 𝑦 ≤ 𝑦1, then xy_min is (x_1, y_1). Only needed when
train_generator or valid_generator are not specified. Defaults to None

• nets (list[torch.nn.Module], optional) – List of neural networks for param-
eterized solution. If provided, length of nets must equal that of conditions

• train_generator (neurodiffeq.generators.BaseGenerator, optional) – Generator for
sampling training points, which must provide a .get_examples()method and a .size
field. train_generator must be specified if t_min and t_max are not set.

• valid_generator (neurodiffeq.generators.BaseGenerator, optional) – Generator for
sampling validation points, which must provide a .get_examples() method and a .
size field. valid_generator must be specified if t_min and t_max are not set.

• analytic_solutions (callable, optional) – Analytical solutions to be com-
pared with neural net solutions. It maps a torch.Tensor to a tuple of function values. Output
shape should match that of nets.

• optimizer (torch.nn.optim.Optimizer, optional) – Optimizer to be used for
training. Defaults to a torch.optim.Adam instance that trains on all parameters of
nets.

• loss_fn (str or torch.nn.moduesl.loss._Loss or callable) – The loss function used for train-
ing.

– If a str, must be present in the keys of neurodiffeq.losses._losses.

– If a torch.nn.modules.loss._Loss instance, just pass the instance.

– If any other callable, it must map A) a residual tensor (shape (n_points, n_equations)), B)
a function values tuple (length n_funcs, each element a tensor of shape (n_points, 1)), and
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C) a coordinate values tuple (length n_coords, each element a tensor of shape (n_coords,
1) to a tensor of empty shape (i.e. a scalar). The returned tensor must be connected to the
computational graph, so that backpropagation can be performed.

• n_batches_train (int, optional) – Number of batches to train in every epoch,
where batch-size equals train_generator.size. Defaults to 1.

• n_batches_valid (int, optional) – Number of batches to validate in every epoch,
where batch-size equals valid_generator.size. Defaults to 4.

• metrics (dict[str, callable], optional) – Additional metrics to be logged
(besides loss). metrics should be a dict where

– Keys are metric names (e.g. ‘analytic_mse’);

– Values are functions (callables) that computes the metric value. These functions must
accept the same input as the differential equation ode_system.

• n_output_units (int, optional) – Number of output units for each neural net-
work. Ignored if nets is specified. Defaults to 1.

• batch_size (int) – [DEPRECATED and IGNORED] Each batch will use all samples
generated. Please specify n_batches_train and n_batches_valid instead.

• shuffle (bool) – [DEPRECATED and IGNORED] Shuffling should be performed by
generators.

additional_loss(residual, funcs, coords)
Additional loss terms for training. This method is to be overridden by subclasses. This method can use
any of the internal variables: self.nets, self.conditions, self.global_epoch, etc.

Parameters

• residual (torch.Tensor) – Residual tensor of differential equation. It has shape
(N_SAMPLES, N_EQUATIONS)

• funcs (List[torch.Tensor]) – Outputs of the networks after parameterization.
There are len(nets) entries in total. Each entry is a tensor of shape (N_SAMPLES,
N_OUTPUT_UNITS).

• coords (List[torch.Tensor]) – Inputs to the networks; a.k.a. the spatio-temporal
coordinates of the system. There are N_COORDS entries in total. Each entry is a tensor of
shape (N_SAMPLES, 1).

Returns Additional loss. Must be a torch.Tensor of empty shape (scalar).

Return type torch.Tensor

compute_func_val(net, cond, *coordinates)
Compute the function value evaluated on the points specified by coordinates.

Parameters

• net (torch.nn.Module) – The network to be parameterized and evaluated.

• cond (neurodiffeq.conditions.BaseCondition) – The condition (a.k.a. parameterization)
for the network.

• coordinates (tuple[torch.Tensor]) – A tuple of coordinate components, each
with shape = (-1, 1).

Returns Function values at the sampled points.

Return type torch.Tensor
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fit(max_epochs, callbacks=(), tqdm_file=<_io.TextIOWrapper name=’<stderr>’ mode=’w’
encoding=’utf-8’>, **kwargs)
Run multiple epochs of training and validation, update best loss at the end of each epoch.

If callbacks is passed, callbacks are run, one at a time, after training, validating and updating best
model.

Parameters

• max_epochs (int) – Number of epochs to run.

• callbacks – A list of callback functions. Each function should accept the solver
instance itself as its only argument.

• tqdm_file (io.StringIO or _io.TextIOWrapper) – File to write tqdm
progress bar. If set to None, tqdm is not used at all. Defaults to sys.stderr.

Rtype callbacks list[callable]

Note:

1. This method does not return solution, which is done in the .get_solution() method.

2. A callback cb(solver) can set solver._stop_training to True to perform early stopping.

get_internals(var_names=None, return_type=’list’)
Return internal variable(s) of the solver

• If var_names == ‘all’, return all internal variables as a dict.

• If var_names is single str, return the corresponding variables.

• If var_names is a list and return_type == ‘list’, return corresponding internal variables as a list.

• If var_names is a list and return_type == ‘dict’, return a dict with keys in var_names.

Parameters

• var_names (str or list[str]) – An internal variable name or a list of internal
variable names.

• return_type (str) – {‘list’, ‘dict’}; Ignored if var_names is a string.

Returns A single variable, or a list/dict of internal variables as indicated above.

Return type list or dict or any

get_residuals(*coords, to_numpy=False, best=True, no_reshape=False)
Get the residuals of the differential equation (or system of differential equations) evaluated at given points.

Parameters

• coords (tuple[torch.Tensor] or tuple[np.ndarray]) – The coordinate
values where the residual(s) shall be evaluated. If numpy arrays are passed, the method
implicitly creates torch tensors with corresponding values.

• to_numpy (bool) – Whether to return numpy arrays. Defaults to False.

• best (bool) – If set to False, the network from the most recent epoch will be used to
evaluate the residuals. If set to True, the network from the epoch with the lowest validation
loss will be used to evaluate the residuals. Defaults to True.

• no_reshape (bool) – If set to True, no reshaping will be performed on output. Defaults
to False.

4.4. neurodiffeq.solvers 69



neurodiffeq Documentation

Returns The residuals evaluated at given points. If there is only one equation in the differential
equation system, a single torch tensor (or numpy array) will be returned. If there are multiple
equations, a list of torch tensors (or numpy arrays) will be returned. The returned shape will
be the same as the first input coordinate, unless no_reshape is set to True. Note that the return
value will always be torch tensors (even if coords are numpy arrays) unless to_numpy is
explicitly set to True.

Return type list[torch.Tensor or numpy.array] or torch.Tensor or numpy.array

get_solution(copy=True, best=True)
Get a (callable) solution object. See this usage example:

solution = solver.get_solution()
point_coords = train_generator.get_examples()
value_at_points = solution(point_coords)

Parameters

• copy (bool) – Whether to make a copy of the networks so that subsequent training
doesn’t affect the solution; Defaults to True.

• best (bool) – Whether to return the solution with lowest loss instead of the solution
after the last epoch. Defaults to True.

Returns A solution object which can be called. To evaluate the solution on certain points, you
should pass the coordinates vector(s) to the returned solution.

Return type BaseSolution

global_epoch
Global epoch count, always equal to the length of train loss history.

Returns Number of training epochs that have been run.

Return type int

run_train_epoch()
Run a training epoch, update history, and perform gradient descent.

run_valid_epoch()
Run a validation epoch and update history.

class neurodiffeq.solvers.SolverSpherical(pde_system, conditions, r_min=None,
r_max=None, nets=None,
train_generator=None, valid_generator=None,
analytic_solutions=None, optimizer=None,
loss_fn=None, n_batches_train=1,
n_batches_valid=4, metrics=None, en-
forcer=None, n_output_units=1, shuffle=None,
batch_size=None)

Bases: neurodiffeq.solvers.BaseSolver

A solver class for solving PDEs in spherical coordinates

Parameters

• pde_system (callable) – The PDE system to solve, which maps a tuple of three coor-
dinates to a tuple of PDE residuals, both the coordinates and PDE residuals must have shape
(n_samples, 1).

• conditions (list[neurodiffeq.conditions.BaseCondition]) – List of boundary conditions
for each target function.
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• r_min (float, optional) – Radius for inner boundary (𝑟0 > 0). Ignored if
train_generator and valid_generator are both set.

• r_max (float, optional) – Radius for outer boundary (𝑟1 > 𝑟0). Ignored if
train_generator and valid_generator are both set.

• nets (list[torch.nn.Module], optional) – List of neural networks for param-
eterized solution. If provided, length of nets must equal that of conditions

• train_generator (neurodiffeq.generators.BaseGenerator, optional) – Generator for
sampling training points, which must provide a .get_examples()method and a .size
field. train_generator must be specified if r_min and r_max are not set.

• valid_generator (neurodiffeq.generators.BaseGenerator, optional) – Generator for
sampling validation points, which must provide a .get_examples() method and a .
size field. valid_generator must be specified if r_min and r_max are not set.

• analytic_solutions (callable, optional) – Analytical solutions to be com-
pared with neural net solutions. It maps a tuple of three coordinates to a tuple of function
values. Output shape should match that of nets.

• optimizer (torch.nn.optim.Optimizer, optional) – Optimizer to be used for
training. Defaults to a torch.optim.Adam instance that trains on all parameters of
nets.

• loss_fn (str or torch.nn.moduesl.loss._Loss or callable) – The loss function used for train-
ing.

– If a str, must be present in the keys of neurodiffeq.losses._losses.

– If a torch.nn.modules.loss._Loss instance, just pass the instance.

– If any other callable, it must map A) a residual tensor (shape (n_points, n_equations)), B)
a function values tuple (length n_funcs, each element a tensor of shape (n_points, 1)), and
C) a coordinate values tuple (length n_coords, each element a tensor of shape (n_coords,
1) to a tensor of empty shape (i.e. a scalar). The returned tensor must be connected to the
computational graph, so that backpropagation can be performed.

• n_batches_train (int, optional) – Number of batches to train in every epoch,
where batch-size equals train_generator.size. Defaults to 1.

• n_batches_valid (int, optional) – Number of batches to validate in every epoch,
where batch-size equals valid_generator.size. Defaults to 4.

• metrics (dict, optional) – Additional metrics to be logged (besides loss).
metrics should be a dict where

– Keys are metric names (e.g. ‘analytic_mse’);

– Values are functions (callables) that computes the metric value. These functions must
accept the same input as the differential equation diff_eq.

• enforcer (callable) – A function of signature enforcer(net: nn.
Module, cond: neurodiffeq.conditions.BaseCondition, coords:
Tuple[torch.Tensor]) -> torch.Tensor that returns the dependent variable
value evaluated on the batch.

• n_output_units (int, optional) – Number of output units for each neural net-
work. Ignored if nets is specified. Defaults to 1.

• batch_size (int) – [DEPRECATED and IGNORED] Each batch will use all samples
generated. Please specify n_batches_train and n_batches_valid instead.
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• shuffle (bool) – [DEPRECATED and IGNORED] Shuffling should be performed by
generators.

additional_loss(residual, funcs, coords)
Additional loss terms for training. This method is to be overridden by subclasses. This method can use
any of the internal variables: self.nets, self.conditions, self.global_epoch, etc.

Parameters

• residual (torch.Tensor) – Residual tensor of differential equation. It has shape
(N_SAMPLES, N_EQUATIONS)

• funcs (List[torch.Tensor]) – Outputs of the networks after parameterization.
There are len(nets) entries in total. Each entry is a tensor of shape (N_SAMPLES,
N_OUTPUT_UNITS).

• coords (List[torch.Tensor]) – Inputs to the networks; a.k.a. the spatio-temporal
coordinates of the system. There are N_COORDS entries in total. Each entry is a tensor of
shape (N_SAMPLES, 1).

Returns Additional loss. Must be a torch.Tensor of empty shape (scalar).

Return type torch.Tensor

compute_func_val(net, cond, *coordinates)
Enforce condition on network with inputs. If self.enforcer is set, use it. Otherwise, fill cond.enforce() with
as many arguments as needed.

Parameters

• net (torch.nn.Module) – Network for parameterized solution.

• cond (neurodiffeq.conditions.BaseCondition) – Condition (a.k.a. parameterization) for
the network.

• coordinates (tuple[torch.Tensor]) – A tuple of vectors, each with shape =
(-1, 1).

Returns Function values at sampled points.

Return type torch.Tensor

fit(max_epochs, callbacks=(), tqdm_file=<_io.TextIOWrapper name=’<stderr>’ mode=’w’
encoding=’utf-8’>, **kwargs)
Run multiple epochs of training and validation, update best loss at the end of each epoch.

If callbacks is passed, callbacks are run, one at a time, after training, validating and updating best
model.

Parameters

• max_epochs (int) – Number of epochs to run.

• callbacks – A list of callback functions. Each function should accept the solver
instance itself as its only argument.

• tqdm_file (io.StringIO or _io.TextIOWrapper) – File to write tqdm
progress bar. If set to None, tqdm is not used at all. Defaults to sys.stderr.

Rtype callbacks list[callable]

Note:

1. This method does not return solution, which is done in the .get_solution() method.
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2. A callback cb(solver) can set solver._stop_training to True to perform early stopping.

get_internals(var_names=None, return_type=’list’)
Return internal variable(s) of the solver

• If var_names == ‘all’, return all internal variables as a dict.

• If var_names is single str, return the corresponding variables.

• If var_names is a list and return_type == ‘list’, return corresponding internal variables as a list.

• If var_names is a list and return_type == ‘dict’, return a dict with keys in var_names.

Parameters

• var_names (str or list[str]) – An internal variable name or a list of internal
variable names.

• return_type (str) – {‘list’, ‘dict’}; Ignored if var_names is a string.

Returns A single variable, or a list/dict of internal variables as indicated above.

Return type list or dict or any

get_residuals(*coords, to_numpy=False, best=True, no_reshape=False)
Get the residuals of the differential equation (or system of differential equations) evaluated at given points.

Parameters

• coords (tuple[torch.Tensor] or tuple[np.ndarray]) – The coordinate
values where the residual(s) shall be evaluated. If numpy arrays are passed, the method
implicitly creates torch tensors with corresponding values.

• to_numpy (bool) – Whether to return numpy arrays. Defaults to False.

• best (bool) – If set to False, the network from the most recent epoch will be used to
evaluate the residuals. If set to True, the network from the epoch with the lowest validation
loss will be used to evaluate the residuals. Defaults to True.

• no_reshape (bool) – If set to True, no reshaping will be performed on output. Defaults
to False.

Returns The residuals evaluated at given points. If there is only one equation in the differential
equation system, a single torch tensor (or numpy array) will be returned. If there are multiple
equations, a list of torch tensors (or numpy arrays) will be returned. The returned shape will
be the same as the first input coordinate, unless no_reshape is set to True. Note that the return
value will always be torch tensors (even if coords are numpy arrays) unless to_numpy is
explicitly set to True.

Return type list[torch.Tensor or numpy.array] or torch.Tensor or numpy.array

get_solution(copy=True, best=True, harmonics_fn=None)
Get a (callable) solution object. See this usage example:

solution = solver.get_solution()
point_coords = train_generator.get_examples()
value_at_points = solution(point_coords)

Parameters

• copy (bool) – Whether to make a copy of the networks so that subsequent training
doesn’t affect the solution; Defaults to True.
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• best (bool) – Whether to return the solution with lowest loss instead of the solution
after the last epoch. Defaults to True.

• harmonics_fn (callable) – If set, use it as function basis for returned solution.

Returns The solution after training.

Return type neurodiffeq.solvers.BaseSolution

global_epoch
Global epoch count, always equal to the length of train loss history.

Returns Number of training epochs that have been run.

Return type int

run_train_epoch()
Run a training epoch, update history, and perform gradient descent.

run_valid_epoch()
Run a validation epoch and update history.

4.5 neurodiffeq.monitors

class neurodiffeq.monitors.BaseMonitor(check_every=None)
Bases: abc.ABC

A tool for checking the status of the neural network during training.

A monitor keeps track of a matplotlib.figure.Figure instance and updates the plot whenever its check()method
is called (usually by a neurodiffeq.solvers.BaseSolver instance).

Note: Currently, the check() method can only run synchronously. It blocks the training / validation process,
so don’t call the check() method too often.

to_callback(fig_dir=None, format=None, logger=None)
Return a callback that updates the monitor plots, which will be run

1. Every self.check_every epochs; and

2. After the last local epoch.

Parameters

• fig_dir (str) – Directory for saving monitor figs; if not specified, figs will not be
saved.

• format (str) – Format for saving figures: {‘jpg’, ‘png’ (default), . . . }.

• logger (str or logging.Logger) – The logger (or its name) to be used for the re-
turned callback. Defaults to the ‘root’ logger.

Returns The callback that updates the monitor plots.

Return type neurodiffeq.callbacks.BaseCallback

class neurodiffeq.monitors.MetricsMonitor(check_every=None)
Bases: neurodiffeq.monitors.BaseMonitor

A monitor for visualizing the loss and other metrics. This monitor does not visualize the solution.
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Parameters check_every (int, optional) – The frequency of checking the neural network
represented by the number of epochs between two checks. Defaults to 100.

to_callback(fig_dir=None, format=None, logger=None)
Return a callback that updates the monitor plots, which will be run

1. Every self.check_every epochs; and

2. After the last local epoch.

Parameters

• fig_dir (str) – Directory for saving monitor figs; if not specified, figs will not be
saved.

• format (str) – Format for saving figures: {‘jpg’, ‘png’ (default), . . . }.

• logger (str or logging.Logger) – The logger (or its name) to be used for the re-
turned callback. Defaults to the ‘root’ logger.

Returns The callback that updates the monitor plots.

Return type neurodiffeq.callbacks.BaseCallback

class neurodiffeq.monitors.Monitor1D(t_min, t_max, check_every=None)
Bases: neurodiffeq.monitors.BaseMonitor

A monitor for checking the status of the neural network during training.

Parameters

• t_min (float) – The lower bound of time domain that we want to monitor.

• t_max (float) – The upper bound of time domain that we want to monitor.

• check_every (int, optional) – The frequency of checking the neural network rep-
resented by the number of epochs between two checks. Defaults to 100.

check(nets, conditions, history)
Draw 2 plots: One shows the shape of the current solution. The other shows the history training loss and
validation loss.

Parameters

• nets (list[torch.nn.Module]) – The neural networks that approximates the ODE (system).

• conditions (list[neurodiffeq.ode.BaseCondition]) – The initial/boundary conditions of
the ODE (system).

• history (dict['train': list[float], 'valid': list[float]]) –
The history of training loss and validation loss. The ‘train_loss’ entry is a list of train-
ing loss and ‘valid_loss’ entry is a list of validation loss.

Note: check is meant to be called by the function solve and solve_system.

to_callback(fig_dir=None, format=None, logger=None)
Return a callback that updates the monitor plots, which will be run

1. Every self.check_every epochs; and

2. After the last local epoch.

Parameters
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• fig_dir (str) – Directory for saving monitor figs; if not specified, figs will not be
saved.

• format (str) – Format for saving figures: {‘jpg’, ‘png’ (default), . . . }.

• logger (str or logging.Logger) – The logger (or its name) to be used for the re-
turned callback. Defaults to the ‘root’ logger.

Returns The callback that updates the monitor plots.

Return type neurodiffeq.callbacks.BaseCallback

class neurodiffeq.monitors.Monitor2D(xy_min, xy_max, check_every=None,
valid_generator=None, solution_style=’heatmap’,
equal_aspect=True, ax_width=5.0, ax_height=4.0,
n_col=2, levels=20)

Bases: neurodiffeq.monitors.BaseMonitor

A monitor for checking the status of the neural network during training. The number and layout of subplots
(matplotlib axes) will be finalized after the first .check() call.

Parameters

• xy_min (tuple[float, float], optional) – The lower bound of 2 dimensions.
If we only care about 𝑥 ≥ 𝑥0 and 𝑦 ≥ 𝑦0, then xy_min is (x_0, y_0).

• xy_max (tuple[float, float], optional) – The upper bound of 2 dimensions.
If we only care about 𝑥 ≤ 𝑥1 and 𝑦 ≤ 𝑦1, then xy_min is (x_1, y_1).

• check_every (int, optional) – The frequency of checking the neural network rep-
resented by the number of epochs between two checks. Defaults to 100.

• valid_generator (neurodiffeq.generators.BaseGenerator) – The gen-
erator used to sample points from the domain when visualizing the solution. The generator
is only called once (during instantiating the generator), and its outputs are stored. Defaults
to a 32x32 Generator2D with method ‘equally-spaced’.

• solution_style (str) –

– If set to ‘heatmap’, solution visualization will be a contour heat map of 𝑢 w.r.t. 𝑥 and 𝑦.
Useful when visualizing a 2-D spatial solution.

– If set to ‘curves’, solution visualization will be 𝑢-𝑥 curves instead of a 2d heat map. Each
curve corresponds to a 𝑡 value. Useful when visualizing 1D spatio-temporal solution. The
first coordinate is interpreted as 𝑥 and the second as 𝑡.

Defaults to ‘heatmap’.

• equal_aspect (bool) – Whether to set aspect ratio to 1:1 for heatmap. Defaults to True.
Ignored if solutions_style is ‘curves’.

• ax_width (float) – Width for each solution visualization. Note that this is different
from width for metrics history, which is equal to ax_width × n_cols.

• ax_height (float) – Height for each solution visualization and metrics history plot.

• n_col (int) – Number of solution visualizations to plot in each row. Note there is always
only 1 plot for metrics history plot per row.

• levels (int) – Number of levels to plot with contourf (heatmap). Defaults to 20.

check(nets, conditions, history)
Draw 2 plots: One shows the shape of the current solution (with heat map). The other shows the history
training loss and validation loss.
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Parameters

• nets (list [torch.nn.Module]) – The neural networks that approximates the PDE.

• conditions (list [neurodiffeq.conditions.BaseCondition]) – The initial/boundary con-
dition of the PDE.

• history (dict['train': list[float], 'valid': list[float]]) –
The history of training loss and validation loss. The ‘train’ entry is a list of training loss
and ‘valid’ entry is a list of validation loss.

Note: check is meant to be called by the function solve2D.

to_callback(fig_dir=None, format=None, logger=None)
Return a callback that updates the monitor plots, which will be run

1. Every self.check_every epochs; and

2. After the last local epoch.

Parameters

• fig_dir (str) – Directory for saving monitor figs; if not specified, figs will not be
saved.

• format (str) – Format for saving figures: {‘jpg’, ‘png’ (default), . . . }.

• logger (str or logging.Logger) – The logger (or its name) to be used for the re-
turned callback. Defaults to the ‘root’ logger.

Returns The callback that updates the monitor plots.

Return type neurodiffeq.callbacks.BaseCallback

class neurodiffeq.monitors.MonitorSpherical(r_min, r_max, check_every=None,
var_names=None, shape=(10, 10,
10), r_scale=’linear’, theta_min=0.0,
theta_max=3.141592653589793,
phi_min=0.0,
phi_max=6.283185307179586)

Bases: neurodiffeq.monitors.BaseMonitor

A monitor for checking the status of the neural network during training.

Parameters

• r_min (float) – The lower bound of radius, i.e., radius of interior boundary.

• r_max (float) – The upper bound of radius, i.e., radius of exterior boundary.

• check_every (int, optional) – The frequency of checking the neural network rep-
resented by the number of epochs between two checks. Defaults to 100.

• var_names (list[str]) – Names of dependent variables. If provided, shall be used
for plot titles. Defaults to None.

• shape (tuple[int]) – Shape of mesh for visualizing the solution. Defaults to (10, 10,
10).

• r_scale (str) – ‘linear’ or ‘log’. Controls the grid point in the 𝑟 direction. Defaults to
‘linear’.

• theta_min (float) – The lower bound of polar angle. Defaults to 0.
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• theta_max (float) – The upper bound of polar angle. Defaults to 𝜋.

• phi_min (float) – The lower bound of azimuthal angle. Defaults to 0.

• phi_max (float) – The upper bound of azimuthal angle. Defaults to 2𝜋.

check(nets, conditions, history, analytic_mse_history=None)
Draw (3n + 2) plots

1. For each function 𝑢𝑖(𝑟, 𝜑, 𝜃), there are 3 axes:

• one ax for 𝑢-𝑟 curves grouped by 𝜑

• one ax for 𝑢-𝑟 curves grouped by 𝜃

• one ax for 𝑢-𝜃-𝜑 contour heat map

2. Additionally, one ax for training and validaiton loss, another for the rest of the metrics

Parameters

• nets (list [torch.nn.Module]) – The neural networks that approximates the PDE.

• conditions (list [neurodiffeq.conditions.BaseCondition]) – The initial/boundary con-
dition of the PDE.

• history (dict[str, list[float]]) – A dict of history of training metrics and
validation metrics, where keys are metric names (str) and values are list of metrics values
(list[float]). It must contain a ‘train_loss’ key and a ‘valid_loss’ key.

• analytic_mse_history (dict['train': list[float], 'valid':
list[float]], deprecated) – [DEPRECATED] Include ‘train_analytic_mse’
and ‘valid_analytic_mse’ in history instead.

Note: check is meant to be called by neurodiffeq.solvers.BaseSolver.

customization()
Customized tweaks can be implemented by overwriting this method.

set_variable_count(n)
Manually set the number of scalar fields to be visualized; If not set, defaults to length of nets passed to
self.check() every time self.check() is called.

Parameters n (int) – number of scalar fields to overwrite default

Returns self

to_callback(fig_dir=None, format=None, logger=None)
Return a callback that updates the monitor plots, which will be run

1. Every self.check_every epochs; and

2. After the last local epoch.

Parameters

• fig_dir (str) – Directory for saving monitor figs; if not specified, figs will not be
saved.

• format (str) – Format for saving figures: {‘jpg’, ‘png’ (default), . . . }.

• logger (str or logging.Logger) – The logger (or its name) to be used for the re-
turned callback. Defaults to the ‘root’ logger.
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Returns The callback that updates the monitor plots.

Return type neurodiffeq.callbacks.BaseCallback

unset_variable_count()
Manually unset the number of scalar fields to be visualized; Once unset, the number defaults to length of
nets passed to self.check() every time self.check() is called.

Returns self

class neurodiffeq.monitors.MonitorSphericalHarmonics(r_min, r_max,
check_every=None,
var_names=None,
shape=(10, 10, 10),
r_scale=’linear’, harmon-
ics_fn=None, theta_min=0.0,
theta_max=3.141592653589793,
phi_min=0.0,
phi_max=6.283185307179586,
max_degree=None)

Bases: neurodiffeq.monitors.MonitorSpherical

A monitor for checking the status of the neural network during training.

Parameters

• r_min (float) – The lower bound of radius, i.e., radius of interior boundary.

• r_max (float) – The upper bound of radius, i.e., radius of exterior boundary.

• check_every (int, optional) – The frequency of checking the neural network rep-
resented by the number of epochs between two checks. Defaults to 100.

• var_names (list[str]) – The names of dependent variables; if provided, shall be used
for plot titles. Defaults to None

• shape (tuple[int]) – Shape of mesh for visualizing the solution. Defaults to (10, 10,
10).

• r_scale (str) – ‘linear’ or ‘log’. Controls the grid point in the 𝑟 direction. Defaults to
‘linear’.

• harmonics_fn (callable) – A mapping from 𝜃 and 𝜑 to basis functions, e.g., spherical
harmonics.

• theta_min (float) – The lower bound of polar angle. Defaults to 0

• theta_max (float) – The upper bound of polar angle. Defaults to 𝜋.

• phi_min (float) – The lower bound of azimuthal angle. Defaults to 0.

• phi_max (float) – The upper bound of azimuthal angle. Defaults to 2𝜋.

• max_degree (int) – DEPRECATED and SUPERSEDED by harmonics_fn. High-
est used for the harmonic basis.

check(nets, conditions, history, analytic_mse_history=None)
Draw (3n + 2) plots

1. For each function 𝑢𝑖(𝑟, 𝜑, 𝜃), there are 3 axes:

• one ax for 𝑢-𝑟 curves grouped by 𝜑

• one ax for 𝑢-𝑟 curves grouped by 𝜃
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• one ax for 𝑢-𝜃-𝜑 contour heat map

2. Additionally, one ax for training and validaiton loss, another for the rest of the metrics

Parameters

• nets (list [torch.nn.Module]) – The neural networks that approximates the PDE.

• conditions (list [neurodiffeq.conditions.BaseCondition]) – The initial/boundary con-
dition of the PDE.

• history (dict[str, list[float]]) – A dict of history of training metrics and
validation metrics, where keys are metric names (str) and values are list of metrics values
(list[float]). It must contain a ‘train_loss’ key and a ‘valid_loss’ key.

• analytic_mse_history (dict['train': list[float], 'valid':
list[float]], deprecated) – [DEPRECATED] Include ‘train_analytic_mse’
and ‘valid_analytic_mse’ in history instead.

Note: check is meant to be called by neurodiffeq.solvers.BaseSolver.

customization()
Customized tweaks can be implemented by overwriting this method.

set_variable_count(n)
Manually set the number of scalar fields to be visualized; If not set, defaults to length of nets passed to
self.check() every time self.check() is called.

Parameters n (int) – number of scalar fields to overwrite default

Returns self

to_callback(fig_dir=None, format=None, logger=None)
Return a callback that updates the monitor plots, which will be run

1. Every self.check_every epochs; and

2. After the last local epoch.

Parameters

• fig_dir (str) – Directory for saving monitor figs; if not specified, figs will not be
saved.

• format (str) – Format for saving figures: {‘jpg’, ‘png’ (default), . . . }.

• logger (str or logging.Logger) – The logger (or its name) to be used for the re-
turned callback. Defaults to the ‘root’ logger.

Returns The callback that updates the monitor plots.

Return type neurodiffeq.callbacks.BaseCallback

unset_variable_count()
Manually unset the number of scalar fields to be visualized; Once unset, the number defaults to length of
nets passed to self.check() every time self.check() is called.

Returns self
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class neurodiffeq.monitors.StreamPlotMonitor2D(xy_min, xy_max, pairs, nx=32, ny=32,
check_every=None, mask_fn=None,
ax_width=13.0, ax_height=10.0,
n_col=2, stream_kwargs=None,
equal_aspect=True,
field_names=None)

Bases: neurodiffeq.monitors.BaseMonitor

to_callback(fig_dir=None, format=None, logger=None)
Return a callback that updates the monitor plots, which will be run

1. Every self.check_every epochs; and

2. After the last local epoch.

Parameters

• fig_dir (str) – Directory for saving monitor figs; if not specified, figs will not be
saved.

• format (str) – Format for saving figures: {‘jpg’, ‘png’ (default), . . . }.

• logger (str or logging.Logger) – The logger (or its name) to be used for the re-
turned callback. Defaults to the ‘root’ logger.

Returns The callback that updates the monitor plots.

Return type neurodiffeq.callbacks.BaseCallback

4.6 neurodiffeq.ode

neurodiffeq.ode.solve(ode, condition, t_min=None, t_max=None, net=None, train_generator=None,
valid_generator=None, optimizer=None, criterion=None,
n_batches_train=1, n_batches_valid=4, additional_loss_term=None, met-
rics=None, max_epochs=1000, monitor=None, return_internal=False,
return_best=False, batch_size=None, shuffle=None)

Train a neural network to solve an ODE.

Parameters

• ode (callable) – The ODE to solve. If the ODE is 𝐹 (𝑥, 𝑡) = 0 where 𝑥 is the dependent
variable and 𝑡 is the independent variable, then ode should be a function that maps (𝑥, 𝑡) to
𝐹 (𝑥, 𝑡).

• condition (neurodiffeq.conditions.BaseCondition) – The initial/boundary condition.

• net (torch.nn.Module, optional) – The neural network used to approximate the solution.
Defaults to None.

• t_min (float) – The lower bound of the domain (t) on which the ODE is solved, only
needed when train_generator or valid_generator are not specified. Defaults to None

• t_max (float) – The upper bound of the domain (t) on which the ODE is solved, only
needed when train_generator or valid_generator are not specified. Defaults to None

• train_generator (neurodiffeq.generators.Generator1D, optional) – The example gen-
erator to generate 1-D training points. Default to None.

• valid_generator (neurodiffeq.generators.Generator1D, optional) – The example gen-
erator to generate 1-D validation points. Default to None.
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• optimizer (torch.optim.Optimizer, optional) – The optimization method to use for train-
ing. Defaults to None.

• criterion (torch.nn.modules.loss._Loss, optional) – The loss function to use for training.
Defaults to None.

• n_batches_train (int, optional) – Number of batches to train in every epoch,
where batch-size equals train_generator.size. Defaults to 1.

• n_batches_valid (int, optional) – Number of batches to validate in every epoch,
where batch-size equals valid_generator.size. Defaults to 4.

• additional_loss_term (callable) – Extra terms to add to the loss function besides
the part specified by criterion. The input of additional_loss_term should be the same as ode.

• metrics (dict[string, callable]) – Metrics to keep track of during training.
The metrics should be passed as a dictionary where the keys are the names of the metrics,
and the values are the corresponding function. The input functions should be the same as
ode and the output should be a numeric value. The metrics are evaluated on both the training
set and validation set.

• max_epochs (int, optional) – The maximum number of epochs to train. Defaults
to 1000.

• monitor (neurodiffeq.ode.Monitor, optional) – The monitor to check the status of neural
network during training. Defaults to None.

• return_internal (bool, optional) – Whether to return the nets, conditions,
training generator, validation generator, optimizer and loss function. Defaults to False.

• return_best (bool, optional) – Whether to return the nets that achieved the low-
est validation loss. Defaults to False.

• batch_size (int) – [DEPRECATED and IGNORED] Each batch will use all samples
generated. Please specify n_batches_train and n_batches_valid instead.

• shuffle (bool) – [DEPRECATED and IGNORED] Shuffling should be performed by
generators.

Returns The solution of the ODE. The history of training loss and validation loss. Optionally, the
nets, conditions, training generator, validation generator, optimizer and loss function.

Return type tuple[neurodiffeq.ode.Solution, dict] or tuple[neurodiffeq.ode.Solution, dict, dict]

Note: This function is deprecated, use a neurodiffeq.solvers.Solver1D instead.

neurodiffeq.ode.solve_system(ode_system, conditions, t_min, t_max, single_net=None,
nets=None, train_generator=None, valid_generator=None,
optimizer=None, criterion=None, n_batches_train=1,
n_batches_valid=4, additional_loss_term=None, metrics=None,
max_epochs=1000, monitor=None, return_internal=False, re-
turn_best=False, batch_size=None, shuffle=None)

Train a neural network to solve an ODE.

Parameters

• ode_system (callable) – The ODE system to solve. If the ODE system consists of
equations 𝐹𝑖(𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑡) = 0 where 𝑥𝑖 is the dependent i-th variable and 𝑡 is the
independent variable, then ode_system should be a function that maps (𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑡) to
a list where the i-th entry is 𝐹𝑖(𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑡).
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• conditions (list[neurodiffeq.conditions.BaseCondition]) – The initial/boundary condi-
tions. The ith entry of the conditions is the condition that 𝑥𝑖 should satisfy.

• t_min (float.) – The lower bound of the domain (t) on which the ODE is solved, only
needed when train_generator or valid_generator are not specified. Defaults to None

• t_max (float) – The upper bound of the domain (t) on which the ODE is solved, only
needed when train_generator or valid_generator are not specified. Defaults to None.

• single_net – The single neural network used to approximate the solution. Only one of
single_net and nets should be specified. Defaults to None

• single_net – torch.nn.Module, optional

• nets (list[torch.nn.Module], optional) – The neural networks used to approximate the so-
lution. Defaults to None.

• train_generator (neurodiffeq.generators.Generator1D, optional) – The example gen-
erator to generate 1-D training points. Default to None.

• valid_generator (neurodiffeq.generators.Generator1D, optional) – The example gen-
erator to generate 1-D validation points. Default to None.

• optimizer (torch.optim.Optimizer, optional) – The optimization method to use for train-
ing. Defaults to None.

• criterion (torch.nn.modules.loss._Loss, optional) – The loss function to use for training.
Defaults to None and sum of square of the output of ode_system will be used.

• n_batches_train (int, optional) – Number of batches to train in every epoch,
where batch-size equals train_generator.size. Defaults to 1.

• n_batches_valid (int, optional) – Number of batches to validate in every epoch,
where batch-size equals valid_generator.size. Defaults to 4.

• additional_loss_term (callable) – Extra terms to add to the loss function besides
the part specified by criterion. The input of additional_loss_term should be the same as
ode_system.

• metrics (dict[str, callable], optional) – Additional metrics to be logged
(besides loss). metrics should be a dict where

– Keys are metric names (e.g. ‘analytic_mse’);

– Values are functions (callables) that computes the metric value. These functions must
accept the same input as the differential equation ode_system.

• max_epochs (int, optional) – The maximum number of epochs to train. Defaults
to 1000.

• monitor (neurodiffeq.ode.Monitor, optional) – The monitor to check the status of nerual
network during training. Defaults to None.

• return_internal (bool, optional) – Whether to return the nets, conditions,
training generator, validation generator, optimizer and loss function. Defaults to False.

• return_best (bool, optional) – Whether to return the nets that achieved the low-
est validation loss. Defaults to False.

• batch_size (int) – [DEPRECATED and IGNORED] Each batch will use all samples
generated. Please specify n_batches_train and n_batches_valid instead.

• shuffle (bool) – [DEPRECATED and IGNORED] Shuffling should be performed by
generators.
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Returns The solution of the ODE. The history of training loss and validation loss. Optionally, the
nets, conditions, training generator, validation generator, optimizer and loss function.

Return type tuple[neurodiffeq.ode.Solution, dict] or tuple[neurodiffeq.ode.Solution, dict, dict]

Note: This function is deprecated, use a neurodiffeq.solvers.Solver1D instead.

4.7 neurodiffeq.pde

class neurodiffeq.pde.CustomBoundaryCondition(center_point, dirichlet_control_points,
neumann_control_points=None)

Bases: neurodiffeq.conditions.IrregularBoundaryCondition

A boundary condition with irregular shape.

Parameters

• center_point (pde.Point) – A point that roughly locate at the center of the domain. It
will be used to sort the control points ‘clockwise’.

• dirichlet_control_points (list[pde.DirichletControlPoint]) – a
list of points on the Dirichlet boundary

enforce(net, *dimensions)
Enforces this condition on a network.

Parameters

• net (torch.nn.Module) – The network whose output is to be re-parameterized.

• coordinates (torch.Tensor) – Inputs of the neural network.

Returns The re-parameterized output, where the condition is automatically satisfied.

Return type torch.Tensor

in_domain(*dimensions)
Given the coordinates (numpy.ndarray), the methods returns an boolean array indicating whether the points
lie within the domain.

Parameters coordinates (numpy.ndarray) – Input tensors, each with shape (n_samples, 1).

Returns Whether each point lies within the domain.

Return type numpy.ndarray

Note:

• This method is meant to be used by monitors for irregular domain visualization.

parameterize(output_tensor, *input_tensors)
Re-parameterizes output(s) of a network.

Parameters

• output_tensor (torch.Tensor) – Output of the neural network.

• input_tensors (torch.Tensor) – Inputs to the neural network; i.e., sampled coordi-
nates; i.e., independent variables.
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Returns The re-parameterized output of the network.

Return type torch.Tensor

Note: This method is abstract for BaseCondition

set_impose_on(ith_unit)
[DEPRECATED] When training several functions with a single, multi-output network, this method is
called (by a Solver class or a solve function) to keep track of which output is being parameterized.

Parameters ith_unit (int) – The index of network output to be parameterized.

Note: This method is deprecated and retained for backward compatibility only. Users interested in
enforcing conditions on multi-output networks should consider using a neurodiffeq.conditions.
EnsembleCondition.

class neurodiffeq.pde.DirichletControlPoint(loc, val)
Bases: neurodiffeq.pde.Point

A 2D point on the Dirichlet boundary.

Parameters

• loc (tuple[float, float]) – The location of the point in the form of (𝑥, 𝑦).

• val (float) – The expected value of 𝑢 at this location.(𝑢(𝑥, 𝑦) is the function we are
solving for)

class neurodiffeq.pde.NeumannControlPoint(loc, val, normal_vector)
Bases: neurodiffeq.pde.Point

A 2D point on the Neumann boundary.

Parameters

• loc (tuple[float, float]) – The location of the point in the form of (𝑥, 𝑦).

• val (float) – The expected normal derivative of 𝑢 at this location. (𝑢(𝑥, 𝑦) is the function
we are solving for)

class neurodiffeq.pde.Point(loc)
Bases: object

A 2D point.

Parameters loc (tuple[float, float]) – The location of the point in the form of (𝑥, 𝑦).

neurodiffeq.pde.make_animation(solution, xs, ts)
Create animation of 1-D time-dependent problems.

Parameters

• solution (callable) – Solution function returned by solve2D (for a 1-D time-
dependent problem).

• xs (numpy.array) – The locations to evaluate solution.

• ts (numpy.array) – The time points to evaluate solution.

Returns The animation.

Return type matplotlib.animation.FuncAnimation
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neurodiffeq.pde.solve2D(pde, condition, xy_min=None, xy_max=None, net=None,
train_generator=None, valid_generator=None, optimizer=None,
criterion=None, n_batches_train=1, n_batches_valid=4, addi-
tional_loss_term=None, metrics=None, max_epochs=1000, moni-
tor=None, return_internal=False, return_best=False, batch_size=None,
shuffle=None)

Train a neural network to solve a PDE with 2 independent variables.

Parameters

• pde (callable) – The PDE to solve. If the PDE is 𝐹 (𝑢, 𝑥, 𝑦) = 0 where 𝑢 is the
dependent variable and 𝑥 and 𝑦 are the independent variables, then pde should be a function
that maps (𝑢, 𝑥, 𝑦) to 𝐹 (𝑢, 𝑥, 𝑦).

• condition (neurodiffeq.conditions.BaseCondition) – The initial/boundary condition.

• xy_min (tuple[float, float], optional) – The lower bound of 2 dimensions.
If we only care about 𝑥 ≥ 𝑥0 and 𝑦 ≥ 𝑦0, then xy_min is (x_0, y_0), only needed when
train_generator and valid_generator are not specified. Defaults to None

• xy_max (tuple[float, float], optional) – The upper bound of 2 dimensions.
If we only care about 𝑥 ≤ 𝑥1 and 𝑦 ≤ 𝑦1, then xy_min is (x_1, y_1), only needed when
train_generator and valid_generator are not specified. Defaults to None

• net (torch.nn.Module, optional) – The neural network used to approximate the solution.
Defaults to None.

• train_generator (neurodiffeq.generators.Generator2D, optional) – The example gen-
erator to generate 1-D training points. Default to None.

• valid_generator (neurodiffeq.generators.Generator2D, optional) – The example gen-
erator to generate 1-D validation points. Default to None.

• optimizer (torch.optim.Optimizer, optional) – The optimization method to use for train-
ing. Defaults to None.

• criterion (torch.nn.modules.loss._Loss, optional) – The loss function to use for training.
Defaults to None.

• additional_loss_term (callable) – Extra terms to add to the loss function besides
the part specified by criterion. The input of additional_loss_term should be the same as
pde_system.

• n_batches_train (int, optional) – Number of batches to train in every epoch,
where batch-size equals train_generator.size. Defaults to 1.

• n_batches_valid (int, optional) – Number of batches to validate in every epoch,
where batch-size equals valid_generator.size. Defaults to 4.

• metrics (dict[string, callable]) – Metrics to keep track of during training.
The metrics should be passed as a dictionary where the keys are the names of the metrics,
and the values are the corresponding function. The input functions should be the same as
pde and the output should be a numeric value. The metrics are evaluated on both the training
set and validation set.

• max_epochs (int, optional) – The maximum number of epochs to train. Defaults
to 1000.

• monitor (neurodiffeq.pde.Monitor2D, optional) – The monitor to check the status of neu-
ral network during training. Defaults to None.

• return_internal (bool, optional) – Whether to return the nets, conditions,
training generator, validation generator, optimizer and loss function. Defaults to False.
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• return_best (bool, optional) – Whether to return the nets that achieved the low-
est validation loss. Defaults to False.

• batch_size (int) – [DEPRECATED and IGNORED] Each batch will use all samples
generated. Please specify n_batches_train and n_batches_valid instead.

• shuffle (bool) – [DEPRECATED and IGNORED] Shuffling should be performed by
generators.

Returns The solution of the PDE. The history of training loss and validation loss. Optionally, the
nets, conditions, training generator, validation generator, optimizer and loss function. The solu-
tion is a function that has the signature solution(xs, ys, as_type).

Return type tuple[neurodiffeq.pde.Solution, dict] or tuple[neurodiffeq.pde.Solution, dict, dict]

Note: This function is deprecated, use a neurodiffeq.solvers.Solver2D instead.

neurodiffeq.pde.solve2D_system(pde_system, conditions, xy_min=None, xy_max=None,
single_net=None, nets=None, train_generator=None,
valid_generator=None, optimizer=None, crite-
rion=None, n_batches_train=1, n_batches_valid=4, addi-
tional_loss_term=None, metrics=None, max_epochs=1000,
monitor=None, return_internal=False, return_best=False,
batch_size=None, shuffle=None)

Train a neural network to solve a PDE with 2 independent variables.

Parameters

• pde_system (callable) – The PDE system to solve. If the PDE is
𝐹𝑖(𝑢1, 𝑢2, ..., 𝑢𝑛, 𝑥, 𝑦) = 0 where 𝑢𝑖 is the i-th dependent variable and 𝑥 and 𝑦 are the
independent variables, then pde_system should be a function that maps (𝑢1, 𝑢2, ..., 𝑢𝑛, 𝑥, 𝑦)
to a list where the i-th entry is 𝐹𝑖(𝑢1, 𝑢2, ..., 𝑢𝑛, 𝑥, 𝑦).

• conditions (list[neurodiffeq.conditions.BaseCondition]) – The initial/boundary condi-
tions. The ith entry of the conditions is the condition that 𝑥𝑖 should satisfy.

• xy_min (tuple[float, float], optional) – The lower bound of 2 dimensions.
If we only care about 𝑥 ≥ 𝑥0 and 𝑦 ≥ 𝑦0, then xy_min is (x_0, y_0). Only needed when
train_generator or valid_generator are not specified. Defaults to None

• xy_max (tuple[float, float], optional) – The upper bound of 2 dimensions.
If we only care about 𝑥 ≤ 𝑥1 and 𝑦 ≤ 𝑦1, then xy_min is (x_1, y_1). Only needed when
train_generator or valid_generator are not specified. Defaults to None

• single_net – The single neural network used to approximate the solution. Only one of
single_net and nets should be specified. Defaults to None

• single_net – torch.nn.Module, optional

• nets (list[torch.nn.Module], optional) – The neural networks used to approximate the so-
lution. Defaults to None.

• train_generator (neurodiffeq.generators.Generator2D, optional) – The example gen-
erator to generate 1-D training points. Default to None.

• valid_generator (neurodiffeq.generators.Generator2D, optional) – The example gen-
erator to generate 1-D validation points. Default to None.

• optimizer (torch.optim.Optimizer, optional) – The optimization method to use for train-
ing. Defaults to None.
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• criterion (torch.nn.modules.loss._Loss, optional) – The loss function to use for training.
Defaults to None.

• n_batches_train (int, optional) – Number of batches to train in every epoch,
where batch-size equals train_generator.size. Defaults to 1.

• n_batches_valid (int, optional) – Number of batches to validate in every epoch,
where batch-size equals valid_generator.size. Defaults to 4.

• additional_loss_term (callable) – Extra terms to add to the loss function besides
the part specified by criterion. The input of additional_loss_term should be the same as
pde_system.

• metrics (dict[string, callable]) – Metrics to keep track of during training.
The metrics should be passed as a dictionary where the keys are the names of the metrics,
and the values are the corresponding function. The input functions should be the same as
pde_system and the output should be a numeric value. The metrics are evaluated on both the
training set and validation set.

• max_epochs (int, optional) – The maximum number of epochs to train. Defaults
to 1000.

• monitor (neurodiffeq.pde.Monitor2D, optional) – The monitor to check the status of
nerual network during training. Defaults to None.

• return_internal (bool, optional) – Whether to return the nets, conditions,
training generator, validation generator, optimizer and loss function. Defaults to False.

• return_best (bool, optional) – Whether to return the nets that achieved the low-
est validation loss. Defaults to False.

• batch_size (int) – [DEPRECATED and IGNORED] Each batch will use all samples
generated. Please specify n_batches_train and n_batches_valid instead.

• shuffle (bool) – [DEPRECATED and IGNORED] Shuffling should be performed by
generators.

Returns The solution of the PDE. The history of training loss and validation loss. Optionally, the
nets, conditions, training generator, validation generator, optimizer and loss function. The solu-
tion is a function that has the signature solution(xs, ys, as_type).

Return type tuple[neurodiffeq.pde.Solution, dict] or tuple[neurodiffeq.pde.Solution, dict, dict]

Note: This function is deprecated, use a neurodiffeq.solvers.Solver2D instead.

4.8 neurodiffeq.pde_spherical

neurodiffeq.pde_spherical.solve_spherical(pde, condition, r_min=None, r_max=None,
net=None, train_generator=None,
valid_generator=None, ana-
lytic_solution=None, optimizer=None, crite-
rion=None, max_epochs=1000, monitor=None,
return_internal=False, return_best=False,
harmonics_fn=None, batch_size=None, shuf-
fle=None)

[DEPRECATED, use SphericalSolver class instead] Train a neural network to solve one PDE with spherical
inputs in 3D space.
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Parameters

• pde (callable) – The PDE to solve. If the PDE is 𝐹 (𝑢, 𝑟, 𝜃, 𝜑) = 0, where 𝑢 is the de-
pendent variable and 𝑟, 𝜃 and 𝜑 are the independent variables, then pde should be a function
that maps (𝑢, 𝑟, 𝜃, 𝜑) to 𝐹 (𝑢, 𝑟, 𝜃, 𝜑).

• condition (neurodiffeq.conditions.BaseCondition) – The initial/boundary condition that
𝑢 should satisfy.

• r_min (float, optional) – Radius for inner boundary; ignored if both generators are
provided.

• r_max (float, optional) – Radius for outer boundary; ignored if both generators are
provided.

• net (torch.nn.Module, optional) – The neural network used to approximate the solution.
Defaults to None.

• train_generator (neurodiffeq.generators.BaseGenerator, optional) – The example
generator to generate 3-D training points. Default to None.

• valid_generator (neurodiffeq.generators.BaseGenerator, optional) – The example
generator to generate 3-D validation points. Default to None.

• analytic_solution (callable) – Analytic solution to the pde system, used for test-
ing purposes. It should map (rs, thetas, phis) to u.

• optimizer (torch.optim.Optimizer, optional) – The optimization method to use for train-
ing. Defaults to None.

• criterion (torch.nn.modules.loss._Loss, optional) – The loss function to use for training.
Defaults to None.

• max_epochs (int, optional) – The maximum number of epochs to train. Defaults
to 1000.

• monitor (neurodiffeq.pde_spherical.MonitorSpherical, optional) – The monitor to check
the status of neural network during training. Defaults to None.

• return_internal (bool, optional) – Whether to return the nets, conditions,
training generator, validation generator, optimizer and loss function. Defaults to False.

• return_best (bool, optional) – Whether to return the nets that achieved the low-
est validation loss. Defaults to False.

• harmonics_fn (callable) – Function basis (spherical harmonics for example) if solv-
ing coefficients of a function basis. Used when returning the solution.

• batch_size (int) – [DEPRECATED and IGNORED] Each batch will use all samples
generated. Please specify n_batches_train and n_batches_valid instead.

• shuffle (bool) – [DEPRECATED and IGNORED] Shuffling should be performed by
generators.

Returns The solution of the PDE. The history of training loss and validation loss. Optionally, MSE
against analytic solution, the nets, conditions, training generator, validation generator, optimizer
and loss function. The solution is a function that has the signature solution(xs, ys, as_type).

Return type tuple[neurodiffeq.pde_spherical.SolutionSpherical, dict] or tu-
ple[neurodiffeq.pde_spherical.SolutionSpherical, dict, dict]

Note: This function is deprecated, use a neurodiffeq.solvers.SphericalSolver instead
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neurodiffeq.pde_spherical.solve_spherical_system(pde_system, conditions,
r_min=None, r_max=None,
nets=None, train_generator=None,
valid_generator=None, an-
alytic_solutions=None, opti-
mizer=None, criterion=None,
max_epochs=1000, moni-
tor=None, return_internal=False,
return_best=False, harmon-
ics_fn=None, batch_size=None,
shuffle=None)

[DEPRECATED, use SphericalSolver class instead] Train a neural network to solve a PDE system with spher-
ical inputs in 3D space

Parameters

• pde_system (callable) – The PDEs ystem to solve. If the PDE is
𝐹𝑖(𝑢1, 𝑢2, ..., 𝑢𝑛, 𝑟, 𝜃, 𝜑) = 0 where 𝑢𝑖 is the i-th dependent variable and 𝑟, 𝜃 and
𝜑 are the independent variables, then pde_system should be a function that maps
(𝑢1, 𝑢2, ..., 𝑢𝑛, 𝑟, 𝜃, 𝜑) to a list where the i-th entry is 𝐹𝑖(𝑢1, 𝑢2, ..., 𝑢𝑛, 𝑟, 𝜃, 𝜑).

• conditions (list[neurodiffeq.conditions.BaseCondition]) – The initial/boundary condi-
tions. The ith entry of the conditions is the condition that 𝑢𝑖 should satisfy.

• r_min (float, optional) – Radius for inner boundary. Ignored if both generators are
provided.

• r_max (float, optional) – Radius for outer boundary. Ignored if both generators are
provided.

• nets (list[torch.nn.Module], optional) – The neural networks used to approximate the so-
lution. Defaults to None.

• train_generator (neurodiffeq.generators.BaseGenerator, optional) – The example
generator to generate 3-D training points. Default to None.

• valid_generator (neurodiffeq.generators.BaseGenerator, optional) – The example
generator to generate 3-D validation points. Default to None.

• analytic_solutions (callable) – Analytic solution to the pde system, used for
testing purposes. It should map (rs, thetas, phis) to a list of [u_1, u_2, . . . , u_n].

• optimizer (torch.optim.Optimizer, optional) – The optimization method to use for train-
ing. Defaults to None.

• criterion (torch.nn.modules.loss._Loss, optional) – The loss function to use for training.
Defaults to None.

• max_epochs (int, optional) – The maximum number of epochs to train. Defaults
to 1000.

• monitor (neurodiffeq.pde_spherical.MonitorSpherical, optional) – The monitor to check
the status of neural network during training. Defaults to None.

• return_internal (bool, optional) – Whether to return the nets, conditions,
training generator, validation generator, optimizer and loss function. Defaults to False.

• return_best (bool, optional) – Whether to return the nets that achieved the low-
est validation loss. Defaults to False.

• harmonics_fn (callable) – Function basis (spherical harmonics for example) if solv-
ing coefficients of a function basis. Used when returning solution.
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• batch_size (int) – [DEPRECATED and IGNORED] Each batch will use all samples
generated. Please specify n_batches_train and n_batches_valid instead.

• shuffle (bool) – [DEPRECATED and IGNORED] Shuffling should be performed by
generators.

Returns The solution of the PDE. The history of training loss and validation loss. Optionally,
MSE against analytic solutions, the nets, conditions, training generator, validation generator,
optimizer and loss function. The solution is a function that has the signature solution(xs, ys,
as_type).

Return type tuple[neurodiffeq.pde_spherical.SolutionSpherical, dict] or tu-
ple[neurodiffeq.pde_spherical.SolutionSpherical, dict, dict]

Note: This function is deprecated, use a neurodiffeq.solvers.SphericalSolver instead

4.9 neurodiffeq.temporal

class neurodiffeq.temporal.Approximator
Bases: abc.ABC

The base class of approximators. An approximator is an approximation of the differential equation’s solution.
It knows the parameters in the neural network, and how to calculate the loss function and the metrics.

class neurodiffeq.temporal.BoundaryCondition(form, points_generator)
Bases: object

A boundary condition. It is used to initialize temporal.Approximators.

Parameters

• form (callable) – The form of the boundary condition.

– For a 1D time-dependent problem, if the boundary condition demands that 𝐵(𝑢, 𝑥) = 0,
then form should be a function that maps 𝑢, 𝑥, 𝑡 to 𝐵(𝑢, 𝑥).

– For a 2D steady-state problem, if the boundary condition demands that 𝐵(𝑢, 𝑥, 𝑦) = 0,
then form should be a function that maps 𝑢, 𝑥, 𝑦 to 𝐵(𝑢, 𝑥, 𝑦).

– For a 2D steady-state system, if the boundary condition demands that 𝐵(𝑢𝑖, 𝑥, 𝑦) = 0,
then form should be a function that maps 𝑢1, 𝑢2, ..., 𝑢𝑛, 𝑥, 𝑦 to 𝐵(𝑢𝑖, 𝑥, 𝑦).

– For a 2D time-dependent problem, if the boundary condition demands that 𝐵(𝑢, 𝑥, 𝑦) =
0, then form should be a function that maps 𝑢, 𝑥, 𝑦, 𝑡 to 𝐵(𝑢𝑖, 𝑥, 𝑦).

Basically the function signature of form should be the same as the pde function of the
given temporal.Approximator.

• points_generator – A generator that generates points on the boundary. It can be a
temporal.generator_1dspatial, temporal.generator_2dspatial_segment, or a generator writ-
ten by user.

class neurodiffeq.temporal.FirstOrderInitialCondition(u0)
Bases: object

A first order initial condition. It is used to initialize temporal.Approximators.
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Parameters u0 (callable) – A function representing the initial condition. If we are solving for

𝑢, then u0 is 𝑢
⃒⃒⃒⃒
𝑡=0

. The input of the function depends on where it is used.

• If it is used as the input for temporal.SingleNetworkApproximator1DSpatialTemporal, then

u0 should map 𝑥 to 𝑢(𝑥, 𝑡)

⃒⃒⃒⃒
𝑡=0

.

• If it is used as the input for temporal.SingleNetworkApproximator2DSpatialTemporal, then

u0 should map (𝑥, 𝑦) to 𝑢(𝑥, 𝑦, 𝑡)

⃒⃒⃒⃒
𝑡=0

.

class neurodiffeq.temporal.Monitor1DSpatialTemporal(check_on_x, check_on_t,
check_every)

Bases: object

A monitor for 1D time-dependent problems.

class neurodiffeq.temporal.Monitor2DSpatial(check_on_x, check_on_y, check_every)
Bases: object

A Monitor for 2D steady-state problems

class neurodiffeq.temporal.Monitor2DSpatialTemporal(check_on_x, check_on_y,
check_on_t, check_every)

Bases: object

A monitor for 2D time-dependent problems.

class neurodiffeq.temporal.MonitorMinimal(check_every)
Bases: object

A monitor that shows the loss function and custom metrics.

class neurodiffeq.temporal.SecondOrderInitialCondition(u0, u0dot)
Bases: object

A second order initial condition. It is used to initialize temporal.Approximators.

Parameters

• u0 (callable) – A function representing the initial condition. If we are solving for is 𝑢,

then u0 is 𝑢
⃒⃒⃒⃒
𝑡=0

. The input of the function dependes on where it is used.

– If it is used as the input for temporal.SingleNetworkApproximator1DSpatialTemporal,

then u0 should map 𝑥 to 𝑢(𝑥, 𝑡)

⃒⃒⃒⃒
𝑡=0

.

– If it is used as the input for temporal.SingleNetworkApproximator2DSpatialTemporal,

then u0 should map (𝑥, 𝑦) to 𝑢(𝑥, 𝑦, 𝑡)

⃒⃒⃒⃒
𝑡=0

.

• u0dot (callable) – A function representing the initial derivative w.r.t. time. If we are

solving for is 𝑢, then u0dot is
𝜕𝑢

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

. The input of the function depends on where it is

used.

– If it is used as the input for temporal.SingleNetworkApproximator1DSpatialTemporal,

then u0 should map 𝑥 to
𝜕𝑢

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

.
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– If it is used as the input for temporal.SingleNetworkApproximator2DSpatialTemporal,

then u0 should map (𝑥, 𝑦) to
𝜕𝑢

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

.

class neurodiffeq.temporal.SingleNetworkApproximator1DSpatialTemporal(single_network,
pde,
ini-
tial_condition,
bound-
ary_conditions,
bound-
ary_strictness=1.0)

Bases: neurodiffeq.temporal.Approximator

An approximator to approximate the solution of a 1D time-dependent problem. The boundary condition will be
enforced by a regularization term in the loss function and the initial condition will be enforced by transforming
the output of the neural network.

Parameters

• single_network (torch.nn.Module) – A neural network with 2 input nodes (x, t) and 1
output node.

• pde (function) – The PDE to solve. If the PDE is 𝐹 (𝑢, 𝑥, 𝑡) = 0 then pde should be a
function that maps (𝑢, 𝑥, 𝑡) to 𝐹 (𝑢, 𝑥, 𝑡).

• initial_condition (temporal.FirstOrderInitialCondition) – A first order initial con-
dition.

• boundary_conditions (list[temporal.BoundaryCondition]) – A list of boundary con-
ditions.

• boundary_strictness (float) – The regularization parameter, defaults to 1. a larger
regularization parameter enforces the boundary conditions more strictly.

class neurodiffeq.temporal.SingleNetworkApproximator2DSpatial(single_network,
pde, bound-
ary_conditions,
bound-
ary_strictness=1.0)

Bases: neurodiffeq.temporal.Approximator

An approximator to approximate the solution of a 2D steady-state problem. The boundary condition will be
enforced by a regularization term in the loss function.

Parameters

• single_network (torch.nn.Module) – A neural network with 2 input nodes (x, y) and 1
output node.

• pde (function) – The PDE to solve. If the PDE is 𝐹 (𝑢, 𝑥, 𝑦) = 0 then pde should be a
function that maps (𝑢, 𝑥, 𝑦) to 𝐹 (𝑢, 𝑥, 𝑦).

• boundary_conditions (list[temporal.BoundaryCondition]) – A list of boundary con-
ditions.

• boundary_strictness (float) – The regularization parameter, defaults to 1. A
larger regularization parameter enforces the boundary conditions more strictly.
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class neurodiffeq.temporal.SingleNetworkApproximator2DSpatialSystem(single_network,
pde,
bound-
ary_conditions,
bound-
ary_strictness=1.0)

Bases: neurodiffeq.temporal.Approximator

An approximator to approximate the solution of a 2D steady-state differential equation system. The boundary
condition will be enforced by a regularization term in the loss function.

Parameters

• single_network (torch.nn.Module) – A neural network with 2 input nodes (x, y) and n
output node (n is the number of dependent variables in the differential equation system)

• pde (callable) – The PDE system to solve. If the PDE is 𝐹𝑖(𝑢1, 𝑢2, ..., 𝑢𝑛, 𝑥, 𝑦) =
0 where 𝑢𝑖 is the i-th dependent variable, then pde should be a function that maps
(𝑢1, 𝑢2, ..., 𝑢𝑛, 𝑥, 𝑦) to a list where the i-th entry is 𝐹𝑖(𝑢1, 𝑢2, ..., 𝑢𝑛, 𝑥, 𝑦).

• boundary_conditions (list[temporal.BoundaryCondition]) – A list of boundary con-
ditions

• boundary_strictness (float) – The regularization parameter, defaults to 1. a larger
regularization parameter enforces the boundary conditions more strictly.

class neurodiffeq.temporal.SingleNetworkApproximator2DSpatialTemporal(single_network,
pde,
ini-
tial_condition,
bound-
ary_conditions,
bound-
ary_strictness=1.0)

Bases: neurodiffeq.temporal.Approximator

An approximator to approximate the solution of a 2D time-dependent problem. The boundary condition will be
enforced by a regularization term in the loss function and the initial condition will be enforced by transforming
the output of the neural network.

Parameters

• single_network (torch.nn.Module) – A neural network with 3 input nodes (x, y, t) and
1 output node.

• pde (callable) – The PDE system to solve. If the PDE is 𝐹 (𝑢, 𝑥, 𝑦, 𝑡) = 0 then pde
should be a function that maps (𝑢, 𝑥, 𝑦, 𝑡) to 𝐹 (𝑢, 𝑥, 𝑦, 𝑡).

• initial_condition (temporal.FirstOrderInitialCondition or tempo-
ral.SecondOrderInitialCondition) – A first order initial condition.

• boundary_conditions (list[temporal.BoundaryCondition]) – A list of boundary con-
ditions.

• boundary_strictness (float) – The regularization parameter, defaults to 1. a larger
regularization parameter enforces the boundary conditions more strictly.

neurodiffeq.temporal.generator_1dspatial(size, x_min, x_max, random=True)
Return a generator that generates 1D points range from x_min to x_max

Parameters

• size (int) – Number of points to generated when __next__ is invoked.
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• x_min (float) – Lower bound of x.

• x_max (float) – Upper bound of x.

• random (bool) –

– If set to False, then return equally spaced points range from x_min to x_max.

– If set to True then generate points randomly.

Defaults to True.

neurodiffeq.temporal.generator_2dspatial_rectangle(size, x_min, x_max, y_min, y_max,
random=True)

Return a generator that generates 2D points in a rectangle.

Parameters

• size (int) – Number of points to generated when __next__ is invoked.

• start (tuple[float, float]) – The starting point of the line segment.

• end (tuple[float, float]) – The ending point of the line segment.

• random (bool) –

– If set to False, then return eqally spaced points range from start to end.

– If set to Rrue then generate points randomly.

Defaults to True.

neurodiffeq.temporal.generator_2dspatial_segment(size, start, end, random=True)
Return a generator that generates 2D points in a line segment.

Parameters

• size (int) – Number of points to generated when __next__ is invoked.

• x_min (float) – Lower bound of x.

• x_max (float) – Upper bound of x.

• y_min (float) – Lower bound of y.

• y_max (float) – Upper bound of y.

• random (bool) –

– If set to False, then return a grid where the points are equally spaced in the x and y
dimension.

– If set to True then generate points randomly.

Defaults to True.

neurodiffeq.temporal.generator_temporal(size, t_min, t_max, random=True)
Return a generator that generates 1D points range from t_min to t_max

Parameters

• size (int) – Number of points to generated when __next__ is invoked.

• t_min (float) – Lower bound of t.

• t_max (float) – Upper bound of t.

• random (bool) –

– If set to False, then return eqally spaced points range from t_min to t_max.
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– If set to True then generate points randomly.

Defaults to True

4.10 neurodiffeq.function_basis

class neurodiffeq.function_basis.BasisOperator
Bases: abc.ABC

class neurodiffeq.function_basis.CustomBasis(fns)
Bases: neurodiffeq.function_basis.FunctionBasis

class neurodiffeq.function_basis.FourierLaplacian(max_degree=12)
Bases: neurodiffeq.function_basis.BasisOperator

A Laplacian operator (in polar coordinates) acting on
∑︁
𝑖

𝑅𝑖(𝑟)𝐹 (𝜑) where 𝐹 is a Fourier component

Parameters max_degree (int) – highest degree for the fourier series

class neurodiffeq.function_basis.FunctionBasis
Bases: abc.ABC

class neurodiffeq.function_basis.HarmonicsLaplacian(max_degree=4)
Bases: neurodiffeq.function_basis.BasisOperator

Laplacian of spherical harmonics can be reduced in the following way. Using this method, we can avoid the
1

sin 𝜃
singularity

∇2𝑅𝑙,𝑚(𝑟)𝑌𝑙,𝑚(𝜃, 𝜑)

=
(︀
∇2

𝑟 + ∇2
𝜃 + ∇2

𝜑

)︀
(𝑅𝑙,𝑚(𝑟)𝑌𝑙,𝑚(𝜃, 𝜑))

= 𝑌𝑙,𝑚∇2
𝑟𝑅𝑙,𝑚 + 𝑅𝑙,𝑚

(︀(︀
∇2

𝜃 + ∇2
𝜑

)︀
𝑌𝑙,𝑚

)︀
= 𝑌𝑙,𝑚∇2

𝑟𝑅𝑙,𝑚 + 𝑅𝑙,𝑚
−𝑙(𝑙 + 1)

𝑟2
𝑌𝑙,𝑚

= 𝑌𝑙,𝑚

(︂
∇2

𝑟𝑅𝑙,𝑚 +
−𝑙(𝑙 + 1)

𝑟2
𝑅𝑙,𝑚

)︂
class neurodiffeq.function_basis.LegendreBasis(max_degree)

Bases: neurodiffeq.function_basis.FunctionBasis

class neurodiffeq.function_basis.RealFourierSeries(max_degree=12)
Bases: neurodiffeq.function_basis.FunctionBasis

Real Fourier Series.

Parameters max_degree (int) – highest degree for the fourier series

class neurodiffeq.function_basis.RealSphericalHarmonics(max_degree=4)
Bases: neurodiffeq.function_basis.FunctionBasis

Spherical harmonics as a function basis

Parameters max_degree (int) – highest degree (currently only supports l<=4) for the spherical
harmonics_fn

neurodiffeq.function_basis.ZeroOrderSphericalHarmonics(max_degree=None, de-
grees=None)

Zonal harmonics (spherical harmonics with order=0)

Parameters
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• max_degree (int) – highest degrees to be included; degrees will contain {0, 1, . . . ,
max_degree}; ignored if degrees is passed

• degrees (list[int]) – a list of degrees to be used, must be nonnegative and unique; if
passed, max_degrees will be ignored

neurodiffeq.function_basis.ZeroOrderSphericalHarmonicsLaplacian(max_degree=None,
de-
grees=None)

Laplacian operator acting on coefficients of zonal harmonics (spherical harmonics with order=0)

Parameters

• max_degree (int) – highest degrees to be included; degrees will contain {0, 1, . . . ,
max_degree}; ignored if degrees is passed

• degrees (list[int]) – a list of degrees to be used, must be nonnegative and unique; if
passed, max_degrees will be ignored

class neurodiffeq.function_basis.ZonalSphericalHarmonics(max_degree=None,
degrees=None)

Bases: neurodiffeq.function_basis.FunctionBasis

Zonal harmonics (spherical harmonics with order=0)

Parameters

• max_degree (int) – highest degrees to be included; degrees will contain {0, 1, . . . ,
max_degree}; ignored if degrees is passed

• degrees (list[int]) – a list of degrees to be used, must be nonnegative and unique; if
passed, max_degrees will be ignored

class neurodiffeq.function_basis.ZonalSphericalHarmonicsLaplacian(max_degree=None,
de-
grees=None)

Bases: neurodiffeq.function_basis.BasisOperator

Laplacian operator acting on coefficients of zonal harmonics (spherical harmonics with order=0)

Parameters

• max_degree (int) – highest degrees to be included; degrees will contain {0, 1, . . . ,
max_degree}; ignored if degrees is passed

• degrees (list[int]) – a list of degrees to be used, must be nonnegative and unique; if
passed, max_degrees will be ignored

4.11 neurodiffeq.generators

This module contains atomic generator classes and useful tools to construct complex generators out of atomic ones

class neurodiffeq.generators.BaseGenerator
Bases: object

Base class for all generators; Children classes must implement a .get_examples method and a .size field.

class neurodiffeq.generators.BatchGenerator(generator, batch_size)
Bases: neurodiffeq.generators.BaseGenerator

A generator which caches samples and returns a single batch of the samples at a time

Parameters
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• generator (BaseGenerator) – A generator used for getting (cached) examples.

• batch_size (int) – Number of batches to be returned. It can be larger than size of
generator, but inefficient if so.

class neurodiffeq.generators.ConcatGenerator(*generators)
Bases: neurodiffeq.generators.BaseGenerator

An concatenated generator for sampling points, whose get_examples() method returns the concatenated
vector of the samples returned by its sub-generators.

Parameters generators (Tuple[BaseGenerator]) – a sequence of sub-generators, must
have a .size field and a .get_examples() method

Note: Not to be confused with EnsembleGenerator which returns all the samples of its sub-generators.

class neurodiffeq.generators.EnsembleGenerator(*generators)
Bases: neurodiffeq.generators.BaseGenerator

A generator for sampling points whose get_examples method returns all the samples of its sub-generators. All
sub-generator must return tensors of the same shape. The number of tensors returned by each sub-generator can
be different.

Parameters generators (Tuple[BaseGenerator]) – a sequence of sub-generators, must
have a .size field and a .get_examples() method

Note: Not to be confused with ConcatGenerator which returns the concatenated vector of samples re-
turned by its sub-generators.

class neurodiffeq.generators.FilterGenerator(generator, filter_fn, size=None, up-
date_size=True)

Bases: neurodiffeq.generators.BaseGenerator

A generator which applies some filtering before samples are returned

Parameters

• generator (BaseGenerator) – A generator used to generate samples to be filtered.

• filter_fn (callable) – A filter to be applied on the sample vectors; maps a list of
tensors to a mask tensor.

• size (int) – Size to be used for self.size. If not given, this attribute is initialized to the
size of generator.

• update_size (bool) – Whether or not to update .size after each call of
self.get_examples. Defaults to True.

class neurodiffeq.generators.Generator1D(size, t_min=0.0, t_max=1.0, method=’uniform’,
noise_std=None)

Bases: neurodiffeq.generators.BaseGenerator

An example generator for generating 1-D training points.

Parameters

• size (int) – The number of points to generate each time get_examples is called.

• t_min (float, optional) – The lower bound of the 1-D points generated, defaults to
0.0.
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• t_max (float, optional) – The upper boound of the 1-D points generated, defaults
to 1.0.

• method (str, optional) – The distribution of the 1-D points generated.

– If set to ‘uniform’, the points will be drew from a uniform distribution Unif(t_min,
t_max).

– If set to ‘equally-spaced’, the points will be fixed to a set of linearly-spaced points that go
from t_min to t_max.

– If set to ‘equally-spaced-noisy’, a normal noise will be added to the previously mentioned
set of points.

– If set to ‘log-spaced’, the points will be fixed to a set of log-spaced points that go from
t_min to t_max.

– If set to ‘log-spaced-noisy’, a normal noise will be added to the previously mentioned set
of points,

– If set to ‘chebyshev1’ or ‘chebyshev’, the points are chebyshev nodes of the first kind
over (t_min, t_max).

– If set to ‘chebyshev2’, the points will be chebyshev nodes of the second kind over [t_min,
t_max].

defaults to ‘uniform’.

Raises ValueError – When provided with an unknown method.

class neurodiffeq.generators.Generator2D(grid=(10, 10), xy_min=(0.0, 0.0), xy_max=(1.0,
1.0), method=’equally-spaced-noisy’,
xy_noise_std=None)

Bases: neurodiffeq.generators.BaseGenerator

An example generator for generating 2-D training points.

Parameters

• grid (tuple[int, int], optional) – The discretization of the 2 dimensions. If
we want to generate points on a 𝑚× 𝑛 grid, then grid is (m, n). Defaults to (10, 10).

• xy_min (tuple[float, float], optional) – The lower bound of 2 dimensions.
If we only care about 𝑥 ≥ 𝑥0 and 𝑦 ≥ 𝑦0, then xy_min is (x_0, y_0). Defaults to (0.0, 0.0).

• xy_max (tuple[float, float], optional) – The upper boound of 2 dimen-
sions. If we only care about 𝑥 ≤ 𝑥1 and 𝑦 ≤ 𝑦1, then xy_min is (x_1, y_1). Defaults
to (1.0, 1.0).

• method (str, optional) – The distribution of the 2-D points generated.

– If set to ‘equally-spaced’, the points will be fixed to the grid specified.

– If set to ‘equally-spaced-noisy’, a normal noise will be added to the previously mentioned
set of points.

– If set to ‘chebyshev’ or ‘chebyshev1’, the points will be 2-D chebyshev points of the first
kind.

– If set to ‘chebyshev2’, the points will be 2-D chebyshev points of the second kind.

Defaults to ‘equally-spaced-noisy’.

• xy_noise_std (tuple[int, int], optional, defaults to None) – The
standard deviation of the noise on the x and y dimension. If not specified, the default
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value will be (grid step size on x dimension / 4, grid step size on y
dimension / 4).

Raises ValueError – When provided with an unknown method.

class neurodiffeq.generators.Generator3D(grid=(10, 10, 10), xyz_min=(0.0, 0.0, 0.0),
xyz_max=(1.0, 1.0, 1.0), method=’equally-
spaced-noisy’)

Bases: neurodiffeq.generators.BaseGenerator

An example generator for generating 3-D training points. NOT TO BE CONFUSED with GeneratorSpherical

Parameters

• grid (tuple[int, int, int], optional) – The discretization of the 3 dimen-
sions. If we want to generate points on a 𝑚 × 𝑛 × 𝑘 grid, then grid is (m, n, k), defaults to
(10, 10, 10).

• xyz_min (tuple[float, float, float], optional) – The lower bound of 3
dimensions. If we only care about 𝑥 ≥ 𝑥0, 𝑦 ≥ 𝑦0, and 𝑧 ≥ 𝑧0 then xyz_min is (𝑥0, 𝑦0, 𝑧0).
Defaults to (0.0, 0.0, 0.0).

• xyz_max (tuple[float, float, float], optional) – The upper bound of 3
dimensions. If we only care about 𝑥 ≤ 𝑥1, 𝑦 ≤ 𝑦1, i and 𝑧 ≤ 𝑧1 then xyz_max is (𝑥1, 𝑦1, 𝑧1).
Defaults to (1.0, 1.0, 1.0).

• method (str, optional) – The distribution of the 3-D points generated.

– If set to ‘equally-spaced’, the points will be fixed to the grid specified.

– If set to ‘equally-spaced-noisy’, a normal noise will be added to the previously mentioned
set of points.

– If set to ‘chebyshev’ or ‘chebyshev1’, the points will be 3-D chebyshev points of the first
kind.

– If set to ‘chebyshev2’, the points will be 3-D chebyshev points of the second kind.

Defaults to ‘equally-spaced-noisy’.

Raises ValueError – When provided with an unknown method.

class neurodiffeq.generators.GeneratorND(grid=(10, 10), r_min=(0.0, 0.0), r_max=(1.0,
1.0), methods=[’equally-spaced’, ’equally-
spaced’], noisy=True, r_noise_std=None,
**kwargs)

Bases: neurodiffeq.generators.BaseGenerator

An example generator for generating N-D training points.

Parameters

• grid (tuple[int, int, .. , int], or it can be int if N=1,
optional) – The discretization of the N dimensions. If we want to generate points on a
𝑛1 × 𝑛2 × ...× 𝑛𝑁 grid, then grid is (n_1, n_2, . . . , n_N). Defaults to (10, 10).

• r_min (tuple[float, .. , float], or it can be float if N=1,
optional) – The lower bound of N dimensions. If we only care about 𝑟1 ≥ 𝑟𝑚𝑖𝑛

1 ,
𝑟2 ≥ 𝑟𝑚𝑖𝑛

2 , . . . , and 𝑟𝑁 ≥ 𝑟𝑚𝑖𝑛
𝑁 then r_min is (r_1_min, r_2_min, . . . , r_N_min). Defaults

to (0.0, 0.0).

• r_max (tuple[float, .. , float], or it can be float if N=1,
optional) – The upper boound of N dimensions. If we only care about 𝑟1 ≤ 𝑟𝑚𝑎𝑥

1 ,
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𝑟2 ≤ 𝑟𝑚𝑎𝑥
2 , . . . , and 𝑟𝑁 ≤ 𝑟𝑚𝑎𝑥

𝑁 then r_max is (r_1_max, r_2_max, . . . , r_N_max).
Defaults to (1.0, 1.0).

• methods (list[str, str, .. , str], or it can be str if N=1,
optional) – The a list of the distributions of each of the 1-D points generated that make
the total N-D points.

– If set to ‘uniform’, the points will be drew from a uniform distribution Unif(r_min[i],
r_max[i]).

– If set to ‘equally-spaced’, the points will be fixed to a set of linearly-spaced points that go
from r_min[i] to r_max[i].

– If set to ‘log-spaced’, the points will be fixed to a set of log-spaced points that go from
r_min[i] to r_max[i].

– If set to ‘exp-spaced’, the points will be fixed to a set of exp-spaced points that go from
r_min[i] to r_max[i].

– If set to ‘chebyshev’ or ‘chebyshev1’, the points will be chebyshev points of the first kind
that go from r_min[i] to r_max[i].

– If set to ‘chebyshev2’, the points will be chebyshev points of the second kind that go from
r_min[i] to r_max[i].

Defaults to [‘equally-spaced’, ‘equally-spaced’].

• noisy (bool) – if set to True a normal noise will be added to all of the N sets of points
that make the generator. Defaults to True.

Raises ValueError – When provided with unknown methods.

class neurodiffeq.generators.GeneratorSpherical(size, r_min=0.0, r_max=1.0,
method=’equally-spaced-noisy’)

Bases: neurodiffeq.generators.BaseGenerator

A generator for generating points in spherical coordinates.

Parameters

• size (int) – Number of points in 3-D sphere.

• r_min (float, optional) – Radius of the interior boundary.

• r_max (float, optional) – Radius of the exterior boundary.

• method (str, optional) – The distribution of the 3-D points generated.

– If set to ‘equally-radius-noisy’, radius of the points will be drawn from a uniform distri-
bution 𝑟 ∼ 𝑈 [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥].

– If set to ‘equally-spaced-noisy’, squared radius of the points will be drawn from a uniform
distribution 𝑟2 ∼ 𝑈 [𝑟2𝑚𝑖𝑛, 𝑟

2
𝑚𝑎𝑥]

Defaults to ‘equally-spaced-noisy’.

Note: Not to be confused with Generator3D.

class neurodiffeq.generators.MeshGenerator(*generators)
Bases: neurodiffeq.generators.BaseGenerator

A generator for sampling points whose get_examples method returns a mesh of the samples of its sub-generators.
All sub-generators must return tensors of the same shape, or a tuple of tensors of the same shape. The number
of tensors returned by each sub-generator can be different, but the intent behind this class is to create an N
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dimensional generator from several 1 dimensional generators, so each input generator should represents one
of the dimensions of your problem. An exception is made for using a MeshGenerator as one of the in-
puts of another MeshGenerator. In that case the original meshed generators are extracted from the input
MeshGenerator, and the final mesh is used using those (e.g MeshGenerator(MeshGenerator(g1,
g2), g3) is equivalent to MeshGenerator(g1, g2, g3), where g1, g2 and g3 are Generator1D).
This is done to make the use of the ^ infix consistent with the use of the MeshGenerator class itself (e.g
MeshGenerator(g1, g2, g3) is equivalent to g1 ^ g2 ^ g3), where g1, g2 and g3 are Generator1D).

Parameters generators (Tuple[BaseGenerator]) – a sequence of sub-generators, must
have a .size field and a .get_examples() method

class neurodiffeq.generators.PredefinedGenerator(*xs)
Bases: neurodiffeq.generators.BaseGenerator

A generator for generating points that are fixed and predefined.

Parameters xs (Tuple[torch.Tensor]) – training points that will be returned

get_examples()
Returns the training points. Points are fixed and predefined.

Returns The predefined training points

Return type tuple[torch.Tensor]

class neurodiffeq.generators.ResampleGenerator(generator, size=None, replace-
ment=False)

Bases: neurodiffeq.generators.BaseGenerator

A generator whose output is shuffled and resampled every time

Parameters

• generator (BaseGenerator) – A generator used to generate samples to be shuffled
and resampled.

• size (int) – Size of the shuffled output. Defaults to the size of generator.

• replacement (bool) – Whether to sample with replacement or not. Defaults to False.

class neurodiffeq.generators.SamplerGenerator(generator)
Bases: neurodiffeq.generators.BaseGenerator

class neurodiffeq.generators.StaticGenerator(generator)
Bases: neurodiffeq.generators.BaseGenerator

A generator that returns the same samples every time. The static samples are obtained by the sub-generator at
instantiation time.

Parameters generator (BaseGenerator) – a generator used to generate the static samples

class neurodiffeq.generators.TransformGenerator(generator, transforms=None, trans-
form=None)

Bases: neurodiffeq.generators.BaseGenerator

A generator which applies certain transformations on the sample vectors.

Parameters

• generator (BaseGenerator) – A generator used to generate samples on which trans-
formations will be applied.

• transforms (list[callable]) – A list of transformations to be applied on the sam-
ple vectors. Identity transformation can be replaced with None
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• transform (callable) – A callable that transforms the output(s) of base generator to
another (tuple of) coordinate(s).

4.12 neurodiffeq.operators

neurodiffeq.operators.cartesian_to_cylindrical(x, y, z)
Convert cartesian coordinates (𝑥, 𝑦, 𝑧) to cylindrical coordinate (𝜌, 𝜑, 𝑧). The input shapes of x, y, and z must
be the same. If the azimuthal angle 𝑝ℎ𝑖 is undefined, the default value will be 0.

Parameters

• x (torch.Tensor) – The 𝑥-component of cartesian coordinates.

• y (torch.Tensor) – The 𝑦-component of cartesian coordinates.

• z (torch.Tensor) – The 𝑧-component of cartesian coordinates.

Returns The 𝜌-, 𝜑-, and 𝑧-component in cylindrical coordinates.

Return type tuple[torch.Tensor]

neurodiffeq.operators.cartesian_to_spherical(x, y, z)
Convert cartesian coordinates (𝑥, 𝑦, 𝑧) to spherical coordinate (𝑟, 𝜃, 𝜑). The input shapes of x, y, and z must be
the same. If either the polar angle 𝜃 or the azimuthal angle 𝑝ℎ𝑖 is not defined, the default value will be 0.

Parameters

• x (torch.Tensor) – The 𝑥-component of cartesian coordinates.

• y (torch.Tensor) – The 𝑦-component of cartesian coordinates.

• z (torch.Tensor) – The 𝑧-component of cartesian coordinates.

Returns The 𝑟-, 𝜃-, and 𝜑-component in spherical coordinates.

Return type tuple[torch.Tensor]

neurodiffeq.operators.curl(u_x, u_y, u_z, x, y, z)
Derives and evaluates the curl of a vector field u in three dimensional cartesian coordinates.

Parameters

• u_x (torch.Tensor) – The 𝑥-component of the vector field 𝑢, must have shape (n_samples,
1).

• u_y (torch.Tensor) – The 𝑦-component of the vector field 𝑢, must have shape (n_samples,
1).

• u_z (torch.Tensor) – The 𝑧-component of the vector field 𝑢, must have shape (n_samples,
1).

• x (torch.Tensor) – A vector of 𝑥-coordinate values, must have shape (n_samples, 1).

• y (torch.Tensor) – A vector of 𝑦-coordinate values, must have shape (n_samples, 1).

• z (torch.Tensor) – A vector of 𝑧-coordinate values, must have shape (n_samples, 1).

Returns The 𝑥, 𝑦, and 𝑧 components of the curl, each with shape (n_samples, 1).

Return type tuple[torch.Tensor]

neurodiffeq.operators.cylindrical_curl(u_rho, u_phi, u_z, rho, phi, z)
Derives and evaluates the cylindrical curl of a cylindrical vector field 𝑢.

Parameters
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• u_rho (torch.Tensor) – The 𝜌-component of the vector field 𝑢, must have shape
(n_samples, 1).

• u_phi (torch.Tensor) – The 𝜑-component of the vector field 𝑢, must have shape
(n_samples, 1).

• u_z (torch.Tensor) – The 𝑧-component of the vector field 𝑢, must have shape (n_samples,
1).

• rho (torch.Tensor) – A vector of 𝜌-coordinate values, must have shape (n_samples, 1).

• phi (torch.Tensor) – A vector of 𝜑-coordinate values, must have shape (n_samples, 1).

• z (torch.Tensor) – A vector of 𝑧-coordinate values, must have shape (n_samples, 1).

Returns The 𝜌, 𝜑, and 𝑧 components of the curl, each with shape (n_samples, 1).

Return type tuple[torch.Tensor]

neurodiffeq.operators.cylindrical_div(u_rho, u_phi, u_z, rho, phi, z)
Derives and evaluates the cylindrical divergence of a cylindrical vector field 𝑢.

Parameters

• u_rho (torch.Tensor) – The 𝜌-component of the vector field 𝑢, must have shape
(n_samples, 1).

• u_phi (torch.Tensor) – The 𝜑-component of the vector field 𝑢, must have shape
(n_samples, 1).

• u_z (torch.Tensor) – The 𝑧-component of the vector field 𝑢, must have shape (n_samples,
1).

• rho (torch.Tensor) – A vector of 𝜌-coordinate values, must have shape (n_samples, 1).

• phi (torch.Tensor) – A vector of 𝜑-coordinate values, must have shape (n_samples, 1).

• z (torch.Tensor) – A vector of 𝑧-coordinate values, must have shape (n_samples, 1).

Returns The divergence evaluated at (𝜌, 𝜑, 𝑧), with shape (n_samples, 1).

Return type torch.Tensor

neurodiffeq.operators.cylindrical_grad(u, rho, phi, z)
Derives and evaluates the cylindrical gradient of a cylindrical scalar field 𝑢.

Parameters

• u (torch.Tensor) – A scalar field 𝑢, must have shape (n_samples, 1).

• rho (torch.Tensor) – A vector of 𝜌-coordinate values, must have shape (n_samples, 1).

• phi (torch.Tensor) – A vector of 𝜑-coordinate values, must have shape (n_samples, 1).

• z (torch.Tensor) – A vector of 𝑧-coordinate values, must have shape (n_samples, 1).

Returns The 𝜌, 𝜑, and 𝑧 components of the gradient, each with shape (n_samples, 1).

Return type tuple[torch.Tensor]

neurodiffeq.operators.cylindrical_laplacian(u, rho, phi, z)
Derives and evaluates the cylindrical laplacian of a cylindrical scalar field 𝑢.

Parameters

• u (torch.Tensor) – A scalar field 𝑢, must have shape (n_samples, 1).

• rho (torch.Tensor) – A vector of 𝜌-coordinate values, must have shape (n_samples, 1).
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• phi (torch.Tensor) – A vector of 𝜑-coordinate values, must have shape (n_samples, 1).

• z (torch.Tensor) – A vector of 𝑧-coordinate values, must have shape (n_samples, 1).

Returns The laplacian evaluated at (𝜌, 𝜑, 𝑧), with shape (n_samples, 1).

Return type torch.Tensor

neurodiffeq.operators.cylindrical_to_cartesian(rho, phi, z)
Convert cylindrical coordinate (𝜌, 𝜑, 𝑧) to cartesian coordinates (𝑥, 𝑦, 𝑧). The input shapes of rho, phi, and z
must be the same.

Parameters

• rho (torch.Tensor) – The 𝜌-component of cylindrical coordinates.

• phi (torch.Tensor) – The 𝜑-component (azimuthal angle) of cylindrical coordinates.

• z (torch.Tensor) – The 𝑧-component of cylindrical coordinates.

Returns The 𝑥-, 𝑦-, and 𝑧-component in cartesian coordinates.

Return type tuple[torch.Tensor]

neurodiffeq.operators.cylindrical_vector_laplacian(u_rho, u_phi, u_z, rho, phi, z)
Derives and evaluates the cylindrical laplacian of a cylindrical vector field 𝑢.

Parameters

• u_rho (torch.Tensor) – The 𝜌-component of the vector field 𝑢, must have shape
(n_samples, 1).

• u_phi (torch.Tensor) – The 𝜑-component of the vector field 𝑢, must have shape
(n_samples, 1).

• u_z (torch.Tensor) – The 𝑧-component of the vector field 𝑢, must have shape (n_samples,
1).

• rho (torch.Tensor) – A vector of 𝜌-coordinate values, must have shape (n_samples, 1).

• phi (torch.Tensor) – A vector of 𝜑-coordinate values, must have shape (n_samples, 1).

• z (torch.Tensor) – A vector of 𝑧-coordinate values, must have shape (n_samples, 1).

Returns The laplacian evaluated at (𝜌, 𝜑, 𝑧), with shape (n_samples, 1).

Return type torch.Tensor

neurodiffeq.operators.div(*us_xs)
Derives and evaluates the divergence of a 𝑛-dimensional vector field u with respect to x.

Parameters us_xs (torch.Tensor) – The input must have 2𝑛 tensors, each of shape (n_samples, 1)
with the former 𝑛 tensors being the entries of 𝑢 and the latter 𝑛 tensors being the entries of 𝑥.

Returns The divergence evaluated at 𝑥, with shape (n_samples, 1).

Return type torch.Tensor

neurodiffeq.operators.grad(u, *xs)
Gradient of tensor u with respect to a tuple of tensors xs. Given 𝑢 and 𝑥1, . . . , 𝑥𝑛, the function returns 𝜕𝑢

𝜕𝑥1
, . . . ,

𝜕𝑢
𝜕𝑥𝑛

Parameters

• u (torch.Tensor) – The 𝑢 described above.

• xs (torch.Tensor) – The sequence of 𝑥𝑖 described above.

4.12. neurodiffeq.operators 105



neurodiffeq Documentation

Returns A tuple of 𝜕𝑢
𝜕𝑥1

, . . . , 𝜕𝑢
𝜕𝑥𝑛

Return type List[torch.Tensor]

neurodiffeq.operators.laplacian(u, *xs)
Derives and evaluates the laplacian of a scalar field 𝑢 with respect to x = [𝑥1, 𝑥2, . . . ]

Parameters

• u (torch.Tensor) – A scalar field 𝑢, must have shape (n_samples, 1).

• xs (torch.Tensor) – The sequence of 𝑥𝑖 described above. Each with shape (n_samples, 1)

Returns The laplacian of 𝑢 evaluated at x, with shape (n_samples, 1).

Return type torch.Tensor

neurodiffeq.operators.spherical_curl(u_r, u_theta, u_phi, r, theta, phi)
Derives and evaluates the spherical curl of a spherical vector field 𝑢.

Parameters

• u_r (torch.Tensor) – The 𝑟-component of the vector field 𝑢, must have shape (n_samples,
1).

• u_theta (torch.Tensor) – The 𝜃-component of the vector field 𝑢, must have shape
(n_samples, 1).

• u_phi (torch.Tensor) – The 𝜑-component of the vector field 𝑢, must have shape
(n_samples, 1).

• r (torch.Tensor) – A vector of 𝑟-coordinate values, must have shape (n_samples, 1).

• theta (torch.Tensor) – A vector of 𝜃-coordinate values, must have shape (n_samples, 1).

• phi (torch.Tensor) – A vector of 𝜑-coordinate values, must have shape (n_samples, 1).

Returns The 𝑟, 𝜃, and 𝜑 components of the curl, each with shape (n_samples, 1).

Return type tuple[torch.Tensor]

neurodiffeq.operators.spherical_div(u_r, u_theta, u_phi, r, theta, phi)
Derives and evaluates the spherical divergence of a spherical vector field 𝑢.

Parameters

• u_r (torch.Tensor) – The 𝑟-component of the vector field 𝑢, must have shape (n_samples,
1).

• u_theta (torch.Tensor) – The 𝜃-component of the vector field 𝑢, must have shape
(n_samples, 1).

• u_phi (torch.Tensor) – The 𝜑-component of the vector field 𝑢, must have shape
(n_samples, 1).

• r (torch.Tensor) – A vector of 𝑟-coordinate values, must have shape (n_samples, 1).

• theta (torch.Tensor) – A vector of 𝜃-coordinate values, must have shape (n_samples, 1).

• phi (torch.Tensor) – A vector of 𝜑-coordinate values, must have shape (n_samples, 1).

Returns The divergence evaluated at (𝑟, 𝜃, 𝜑), with shape (n_samples, 1).

Return type torch.Tensor

neurodiffeq.operators.spherical_grad(u, r, theta, phi)
Derives and evaluates the spherical gradient of a spherical scalar field 𝑢.
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Parameters

• u (torch.Tensor) – A scalar field 𝑢, must have shape (n_samples, 1).

• r (torch.Tensor) – A vector of 𝑟-coordinate values, must have shape (n_samples, 1).

• theta (torch.Tensor) – A vector of 𝜃-coordinate values, must have shape (n_samples, 1).

• phi (torch.Tensor) – A vector of 𝜑-coordinate values, must have shape (n_samples, 1).

Returns The 𝑟, 𝜃, and 𝜑 components of the gradient, each with shape (n_samples, 1).

Return type tuple[torch.Tensor]

neurodiffeq.operators.spherical_laplacian(u, r, theta, phi)
Derives and evaluates the spherical laplacian of a spherical scalar field 𝑢.

Parameters

• u (torch.Tensor) – A scalar field 𝑢, must have shape (n_samples, 1).

• r (torch.Tensor) – A vector of 𝑟-coordinate values, must have shape (n_samples, 1).

• theta (torch.Tensor) – A vector of 𝜃-coordinate values, must have shape (n_samples, 1).

• phi (torch.Tensor) – A vector of 𝜑-coordinate values, must have shape (n_samples, 1).

Returns The laplacian evaluated at (𝑟, 𝜃, 𝜑), with shape (n_samples, 1).

Return type torch.Tensor

neurodiffeq.operators.spherical_to_cartesian(r, theta, phi)
Convert spherical coordinate (𝑟, 𝜃, 𝜑) to cartesian coordinates (𝑥, 𝑦, 𝑧). The input shapes of r, theta, and phi
must be the same.

Parameters

• r (torch.Tensor) – The 𝑟-component of spherical coordinates.

• theta (torch.Tensor) – The 𝜃-component (polar angle) of spherical coordinates.

• phi (torch.Tensor) – The 𝜑-component (azimuthal angle) of spherical coordinates.

Returns The 𝑥-, 𝑦-, and 𝑧-component in cartesian coordinates.

Return type tuple[torch.Tensor]

neurodiffeq.operators.spherical_vector_laplacian(u_r, u_theta, u_phi, r, theta, phi)
Derives and evaluates the spherical laplacian of a spherical vector field 𝑢.

Parameters

• u_r (torch.Tensor) – The 𝑟-component of the vector field 𝑢, must have shape (n_samples,
1).

• u_theta (torch.Tensor) – The 𝜃-component of the vector field 𝑢, must have shape
(n_samples, 1).

• u_phi (torch.Tensor) – The 𝜑-component of the vector field 𝑢, must have shape
(n_samples, 1).

• r (torch.Tensor) – A vector of 𝑟-coordinate values, must have shape (n_samples, 1).

• theta (torch.Tensor) – A vector of 𝜃-coordinate values, must have shape (n_samples, 1).

• phi (torch.Tensor) – A vector of 𝜑-coordinate values, must have shape (n_samples, 1).

Returns The laplacian evaluated at (𝑟, 𝜃, 𝜑), with shape (n_samples, 1).
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Return type torch.Tensor

neurodiffeq.operators.vector_laplacian(u_x, u_y, u_z, x, y, z)
Derives and evaluates the vector laplacian of a vector field u in three dimensional cartesian coordinates.

Parameters

• u_x (torch.Tensor) – The 𝑥-component of the vector field 𝑢, must have shape (n_samples,
1).

• u_y (torch.Tensor) – The 𝑦-component of the vector field 𝑢, must have shape (n_samples,
1).

• u_z (torch.Tensor) – The 𝑧-component of the vector field 𝑢, must have shape (n_samples,
1).

• x (torch.Tensor) – A vector of 𝑥-coordinate values, must have shape (n_samples, 1).

• y (torch.Tensor) – A vector of 𝑦-coordinate values, must have shape (n_samples, 1).

• z (torch.Tensor) – A vector of 𝑧-coordinate values, must have shape (n_samples, 1).

Returns Components of vector laplacian of u evaluated at x, each with shape (n_samples, 1).

Return type tuple[torch.Tensor]

4.13 neurodiffeq.callbacks

class neurodiffeq.callbacks.ActionCallback(logger=None)
Bases: neurodiffeq.callbacks.BaseCallback

Base class of action callbacks. Custom callbacks that performs an action should subclass this class.

Parameters logger (str or logging.Logger) – The logger (or its name) to be used for this
callback. Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.AndCallback(condition_callbacks, logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which evaluates to True iff none of its sub-ConditionCallback s evaluates to
False.

Parameters

• condition_callbacks (list[ConditionCallback]) – List of sub-
ConditionCallback s.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

Note: c = AndCallback([c1, c2, c3]) can be simplified as c = c1 & c2 & c3.

class neurodiffeq.callbacks.BaseCallback(logger=None)
Bases: abc.ABC, neurodiffeq.callbacks._LoggerMixin

Base class of all callbacks. The class should not be directly subclassed. Instead, subclass ActionCallback or
ConditionCallback.

Parameters logger (str or logging.Logger) – The logger (or its name) to be used for this
callback. Defaults to the ‘root’ logger.
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class neurodiffeq.callbacks.CheckpointCallback(ckpt_dir, logger=None)
Bases: neurodiffeq.callbacks.ActionCallback

A callback that saves the networks (and their weights) to the disk.

Parameters

• ckpt_dir (str) – The directory to save model checkpoints. If non-existent, the directory
is automatically created at instantiation time.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

Note: Unless the callback is called twice within the same second, new checkpoints will not overwrite existing
ones.

class neurodiffeq.callbacks.ClosedIntervalGlobal(min=None, max=None, log-
ger=None)

Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which evaluates to True only when 𝑔0 ≤ 𝑔 ≤ 𝑔1, where 𝑔 is the global epoch count.

Parameters

• min (int) – Lower bound of the closed interval (𝑔0 in the above inequality). Defaults to
None.

• max (int) – Upper bound of the closed interval (𝑔1 in the above inequality). Defaults to
None.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.ClosedIntervalLocal(min=None, max=None, logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which evaluates to True only when 𝑙0 ≤ 𝑙 ≤ 𝑙1, where 𝑙 is the local epoch count.

Parameters

• min (int) – Lower bound of the closed interval (𝑙0 in the above inequality). Defaults to
None.

• max (int) – Upper bound of the closed interval (𝑙1 in the above inequality). Defaults to
None.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.ConditionCallback(logger=None)
Bases: neurodiffeq.callbacks.BaseCallback

Base class of condition callbacks. Custom callbacks that determines whether some action shall be performed
should subclass this class and overwrite the .condition method.

Instances of ConditionCallback (and its children classes) support (short-circuit) evaluation of common
boolean operations: & (and), | (or), ~ (not), and ^ (xor).

Parameters logger (str or logging.Logger) – The logger (or its name) to be used for this
callback. Defaults to the ‘root’ logger.

4.13. neurodiffeq.callbacks 109



neurodiffeq Documentation

class neurodiffeq.callbacks.EveCallback(base_value=1.0, double_at=0.1, n_0=1,
n_max=None, use_train=True, metric=’loss’,
logger=None)

Bases: neurodiffeq.callbacks.ActionCallback

A callback that readjusts the number of batches for training based on latest value of a specified metric. The

number of batches will be
(︀
𝑛0 · 2𝑘

)︀
or 𝑛max (if specified), whichever is lower, where 𝑘 = max

(︂
0,

⌊︂
log𝑝

𝑣

𝑣0

⌋︂)︂
and 𝑣 is the value of the metric in the last epoch.

Parameters

• base_value (float) – Base value of the specified metric (𝑣0 in the above equation).
When the metric value is higher than base_value, number of batches will be 𝑛0.

• double_at (float) – The ratio at which the batch number will be doubled (𝑝 in the
above equation). When

𝑣

𝑣0
= 𝑝𝑘, the number of batches will be

(︀
𝑛0 · 2𝑘

)︀
.

• n_0 (int) – Minimum number of batches (𝑛0). Defaults to 1.

• n_max (int) – Maximum number of batches (𝑛max). Defaults to infinity.

• use_train (bool) – Whether to use the training (instead of validation) phase value of
the metric. Defaults to True.

• metric (str) – Name of which metric to use. Must be ‘loss’ or present in solver.
metrics_fn.keys(). Defaults to ‘loss’.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.FalseCallback(logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which always evaluates to False.

Parameters logger (str or logging.Logger) – The logger (or its name) to be used for this
callback. Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.MonitorCallback(monitor, fig_dir=None, format=None, log-
ger=None, **kwargs)

Bases: neurodiffeq.callbacks.ActionCallback

A callback for updating the monitor plots (and optionally saving the fig to disk).

Parameters

• monitor (neurodiffeq.monitors.BaseMonitor) – The underlying monitor responsible for
plotting solutions.

• fig_dir (str) – Directory for saving monitor figs; if not specified, figs will not be saved.

• format (str) – Format for saving figures: {‘jpg’, ‘png’ (default), . . . }.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.NotCallback(condition_callback, logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which evaluates to True iff its sub-ConditionCallback evaluates to False.

Parameters
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• condition_callback (ConditionCallback) – The sub-ConditionCallback
.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

Note: c = NotCallback(c1) can be simplified as c = ~c1.

class neurodiffeq.callbacks.OnFirstGlobal(logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which evaluates to True only on the first global epoch.

Parameters logger (str or logging.Logger) – The logger (or its name) to be used for this
callback. Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.OnFirstLocal(logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which evaluates to True only on the first local epoch.

Parameters logger (str or logging.Logger) – The logger (or its name) to be used for this
callback. Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.OnLastLocal(logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which evaluates to True only on the last local epoch.

Parameters logger (str or logging.Logger) – The logger (or its name) to be used for this
callback. Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.OrCallback(condition_callbacks, logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which evaluates to False iff none of its sub-ConditionCallback s evaluates to
True.

Parameters

• condition_callbacks (list[ConditionCallback]) – List of sub-
ConditionCallback s.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

Note: c = OrCallback([c1, c2, c3]) can be simplified as c = c1 | c2 | c3.

class neurodiffeq.callbacks.PeriodGlobal(period, offset=0, logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallbackwhich evaluates to True only when the global epoch count equals period×𝑛+offset.

Parameters

• period (int) – Period of the callback.

• offset (int) – Offset of the period. Defaults to 0.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.
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class neurodiffeq.callbacks.PeriodLocal(period, offset=0, logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallbackwhich evaluates to True only when the local epoch count equals period×𝑛+offset.

Parameters

• period (int) – Period of the callback.

• offset (int) – Offset of the period. Defaults to 0.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.ProgressBarCallBack(logger=None)
Bases: neurodiffeq.callbacks.ActionCallback

class neurodiffeq.callbacks.Random(probability, logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which has a certain probability of evaluating to True.

Parameters

• probability (float) – The probability of this callback evaluating to True (between 0
and 1).

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.RepeatedMetricAbove(threshold, use_train, metric, repetition,
logger)

Bases: neurodiffeq.callbacks._RepeatedMetricChange

A ConditionCallback which evaluates to True if a certain metric has been greater than a given value 𝑣 for
the latest 𝑛 epochs.

Parameters

• threshold (float) – The value v.

• use_train (bool) – Whether to use the metric value in the training (rather than valida-
tion) phase.

• metric (str) – Name of which metric to use. Must be ‘loss’ or present in solver.
metrics_fn.keys(). Defaults to ‘loss’.

• repetition (int) – Number of times the metric should diverge beyond said gap.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.RepeatedMetricBelow(threshold, use_train, metric, repetition,
logger)

Bases: neurodiffeq.callbacks._RepeatedMetricChange

A ConditionCallback which evaluates to True if a certain metric has been less than a given value 𝑣 for the
latest 𝑛 epochs.

Parameters

• threshold (float) – The value v.

• use_train (bool) – Whether to use the metric value in the training (rather than valida-
tion) phase.
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• metric (str) – Name of which metric to use. Must be ‘loss’ or present in solver.
metrics_fn.keys(). Defaults to ‘loss’.

• repetition (int) – Number of times the metric should diverge beyond said gap.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.RepeatedMetricConverge(epsilon, use_train=True, met-
ric=’loss’, repetition=1, log-
ger=None)

Bases: neurodiffeq.callbacks._RepeatedMetricChange

A ConditionCallback which evaluates to True if a certain metric for the latest 𝑛 epochs kept converging
within some tolerance 𝜀.

Parameters

• epsilon (float) – The said tolerance.

• use_train (bool) – Whether to use the metric value in the training (rather than valida-
tion) phase.

• metric (str) – Name of which metric to use. Must be ‘loss’ or present in solver.
metrics_fn.keys(). Defaults to ‘loss’.

• repetition (int) – Number of times the metric should converge within said tolerance.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.RepeatedMetricDiverge(gap, use_train=True, metric=’loss’,
repetition=1, logger=None)

Bases: neurodiffeq.callbacks._RepeatedMetricChange

A ConditionCallback which evaluates to True if a certain metric for the latest 𝑛 epochs kept diverging
beyond some gap.

Parameters

• gap (float) – The said gap.

• use_train (bool) – Whether to use the metric value in the training (rather than valida-
tion) phase.

• metric (str) – Name of which metric to use. Must be ‘loss’ or present in solver.
metrics_fn.keys(). Defaults to ‘loss’.

• repetition (int) – Number of times the metric should diverge beyond said gap.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.RepeatedMetricDown(at_least_by=0.0, use_train=True, met-
ric=’loss’, repetition=1, logger=None)

Bases: neurodiffeq.callbacks._RepeatedMetricChange

A ConditionCallback which evaluates to True if a certain metric for the latest 𝑛 epochs kept decreasing
by at least some margin.

Parameters

• at_least_by (float) – The said margin.

• use_train (bool) – Whether to use the metric value in the training (rather than valida-
tion) phase.

4.13. neurodiffeq.callbacks 113



neurodiffeq Documentation

• metric (str) – Name of which metric to use. Must be ‘loss’ or present in solver.
metrics_fn.keys(). Defaults to ‘loss’.

• repetition (int) – Number of times the metric should decrease by the said margin (the
𝑛).

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.RepeatedMetricUp(at_least_by=0.0, use_train=True, met-
ric=’loss’, repetition=1, logger=None)

Bases: neurodiffeq.callbacks._RepeatedMetricChange

A ConditionCallback which evaluates to True if a certain metric for the latest 𝑛 epochs kept increasing
by at least some margin.

Parameters

• at_least_by (float) – The said margin.

• use_train (bool) – Whether to use the metric value in the training (rather than valida-
tion) phase.

• metric (str) – Name of which metric to use. Must be ‘loss’ or present in solver.
metrics_fn.keys(). Defaults to ‘loss’.

• repetition (int) – Number of times the metric should increase by the said margin (the
𝑛).

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.ReportCallback(logger=None)
Bases: neurodiffeq.callbacks.ActionCallback

A callback that logs the training/validation information, including

• number of batches (train/valid)

• batch size (train/valid)

• generator to be used (train/valid)

Parameters logger (str or logging.Logger) – The logger (or its name) to be used for this
callback. Defaults to the ‘root’ logger.

neurodiffeq.callbacks.ReportOnFitCallback(logger=None)
A callback that logs the training/validation information, including

• number of batches (train/valid)

• batch size (train/valid)

• generator to be used (train/valid)

Parameters logger (str or logging.Logger) – The logger (or its name) to be used for this
callback. Defaults to the ‘root’ logger.

neurodiffeq.callbacks.SetCriterion(loss_fn, reset=False, logger=None)
A callback that sets the criterion (a.k.a. loss function) of the solver. Best used together with a condition
callback.

Parameters
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• loss_fn (torch.nn.modules.loss._Loss or callable or str.) – The loss function
to be set for the solver. It can be

– An instance of torch.nn.modules.loss._Loss which computes loss of the
PDE/ODE residuals against a zero tensor.

– A callable object which maps residuals, function values, and input coordinates to a scalar
loss; or

– A str which is present in neurodiffeq.losses._losses.keys().

• reset (bool) – If True, the criterion will be reset every time the callback is called. Oth-
erwise, the criterion will only be set once. Defaults to False.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.SetLossFn(loss_fn, reset=False, logger=None)
Bases: neurodiffeq.callbacks.ActionCallback

A callback that sets the criterion (a.k.a. loss function) of the solver. Best used together with a condition
callback.

Parameters

• loss_fn (torch.nn.modules.loss._Loss or callable or str.) – The loss function
to be set for the solver. It can be

– An instance of torch.nn.modules.loss._Loss which computes loss of the
PDE/ODE residuals against a zero tensor.

– A callable object which maps residuals, function values, and input coordinates to a scalar
loss; or

– A str which is present in neurodiffeq.losses._losses.keys().

• reset (bool) – If True, the criterion will be reset every time the callback is called. Oth-
erwise, the criterion will only be set once. Defaults to False.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.SetOptimizer(optimizer, optimizer_args=None, opti-
mizer_kwargs=None, reset=False, log-
ger=None)

Bases: neurodiffeq.callbacks.ActionCallback

A callback that sets the optimizer of the solver. Best used together with a condition callback.

• If an optimizer instance is passed, it must contain a sequence of parameters to be updated.

• If an optimizer subclass is passed, optimizer_args and optimizer_kwargs can be supplied.

Parameters

• optimizer (type or torch.optim.Optimizer) – Optimizer instance (or its class) to
be set.

• optimizer_args (tuple) – Positional arguments to be passed to the optimizer con-
structor in addition to the parameter sequence. Ignored if optimizer is an instance (instead
of a class).

• optimizer_kwargs (dict) – Keyword arguments to be passed to the optimizer con-
structor in addition to the parameter sequence. Ignored if optimizer is an instance (instead
of a class).
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• reset (bool) – If True, the optimizer will be reset every time the callback is called.
Otherwise, the optimizer will only be set once. Defaults to False.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.SimpleTensorboardCallback(writer=None, logger=None)
Bases: neurodiffeq.callbacks.ActionCallback

A callback that writes all metric values to the disk for TensorBoard to plot. Tensorboard must be installed for
this callback to work.

Parameters

• writer (torch.utils.tensorboard.SummaryWriter) – The summary writer
for writing values to disk. Defaults to a new SummaryWriter instance created with de-
fault kwargs.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.StopCallback(logger=None)
Bases: neurodiffeq.callbacks.ActionCallback

A callback that stops the training/validation process and terminates the solver.fit() call.

Parameters logger (str or logging.Logger) – The logger (or its name) to be used for this
callback. Defaults to the ‘root’ logger.

Note: This callback should always be used together with a ConditionCallback, otherwise the solver.fit()
call will exit after first epoch.

class neurodiffeq.callbacks.TrueCallback(logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which always evaluates to True.

Parameters logger (str or logging.Logger) – The logger (or its name) to be used for this
callback. Defaults to the ‘root’ logger.

class neurodiffeq.callbacks.XorCallback(condition_callbacks, logger=None)
Bases: neurodiffeq.callbacks.ConditionCallback

A ConditionCallback which evaluates to False iff evenly many of its sub-ConditionCallback s
evaluates to True.

Parameters

• condition_callbacks (list[ConditionCallback]) – List of sub-
ConditionCallback s.

• logger (str or logging.Logger) – The logger (or its name) to be used for this callback.
Defaults to the ‘root’ logger.

Note: c = XorCallback([c1, c2, c3]) can be simplified as c = c1 ^ c2 ^ c3.

116 Chapter 4. API Reference



neurodiffeq Documentation

4.14 neurodiffeq.utils

neurodiffeq.utils.set_seed(seed_value, ignore_numpy=False, ignore_torch=False, ig-
nore_random=False)

Set the random seed for the numpy, torch, and random packages.

Parameters

• seed_value (int) – The value of seed.

• ignore_numpy (bool) – If True, the seed for numpy.random will not be set. Defaults to
False.

• ignore_torch (bool) – If True, the seed for torch will not be set. Defaults to False.

• ignore_random (bool) – If True, the seed for random will not be set. Defaults to False.

neurodiffeq.utils.set_tensor_type(device=None, float_bits=32)
Set the default torch tensor type to be used with neurodiffeq.

Parameters

• device (str) – Either “cpu” or “cuda” (“gpu”); defaults to “cuda” if available.

• float_bits (int) – Length of float numbers. Either 32 (float) or 64 (double); defaults
to 32.

4.14. neurodiffeq.utils 117



neurodiffeq Documentation

118 Chapter 4. API Reference



CHAPTER 5

How Does It Work?

To solve a differential equation. We need the solution to satisfy 2 things: 1. They need to satisfy the equation 2. They
need to satisfy the initial/boundary conditions

5.1 Satisfying the Equation

The key idea of solving differential equations with ANNs is to reformulate the problem as an optimization problem in
which we minimize the residual of the differential equations. In a very general sense, a differential equation can be
expressed as

ℒ𝑢− 𝑓 = 0

where ℒ is the differential operator, 𝑢 (𝑥, 𝑡) is the solution that we wish to find, and 𝑓 is a known forcing function.
Note that ℒ contains any combination of temporal and spatial partial derivatives. Moreover, 𝑥 is in general a vector
in three spatial dimensions and 𝑢 is a vector of solutions. We denote the output of the neural network as 𝑢𝑁 (𝑥, 𝑡; 𝑝)
where the parameter vector 𝑝 is a vector containing the weights and biases of the neural network. We will drop the
arguments of the neural network solution in order to be concise. If 𝑢𝑁 is a solution to the differential equation, then
the residual

ℛ (𝑢𝑁 ) = ℒ𝑢𝑁 − 𝑓

will be identically zero. One way to incorporate this into the training process of a neural network is to use the residual
as the loss function. In general, the 𝐿2 loss of the residual is used. This is the convention that NeuroDiffEq
follows, although we note that other loss functions could be conceived. Solving the differential equation is re-cast as
the following optimization problem:

min
𝑝

(ℒ𝑢𝑁 − 𝑓)
2
.

5.2 Satisfying the Initial/Boundary Conditions

It is necessary to inform the neural network about any boundary and initial conditions since it has no way of enforcing
these a priori. There are two primary ways to satisfy the boundary and initial conditions. First, one can impose the
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initial/boundary conditions in the loss function. For example, given an initial condition 𝑢 (𝑥, 𝑡0) = 𝑢0 (𝑥), the loss
function can be modified to:

min
𝑝

[︁
(ℒ𝑢𝑁 − 𝑓)

2
+ 𝜆 (𝑢𝑁 (𝑥, 𝑡0) − 𝑢0 (𝑥))

2
]︁

where the second term penalizes solutions that don’t satisfy the initial condition. Larger values of the regularization
parameter 𝜆 result in stricter satisfaction of the initial condition while sacrificing solution accuracy. However, this
approach does not lead to exact satisfaction of the initial and boundary conditions.

Another option is to transform the 𝑢𝑁 in a way such that the initial/boundary conditions are satisfied by construction.
Given an initial condition 𝑢0 (𝑥) the neural network can be transformed according to:

̃︀𝑢 (𝑥, 𝑡) = 𝑢0 (𝑥) +
(︁

1 − 𝑒−(𝑡−𝑡0)
)︁
𝑢𝑁 (𝑥, 𝑡)

so that when 𝑡 = 𝑡0, ̃︀𝑢 will always be 𝑢0. Accordingly, the objective function becomes

min
𝑝

(ℒ̃︀𝑢− 𝑓)
2
.

This approach is similar to the trial function approach, but with a different form of the trial function. Modifying the
neural network to account for boundary conditions can also be done. In general, the transformed solution will have
the form:

̃︀𝑢 (𝑥, 𝑡) = 𝐴 (𝑥, 𝑡;𝑥boundary, 𝑡0)𝑢𝑁 (𝑥, 𝑡)

where 𝐴 (𝑥, 𝑡;𝑥boundary, 𝑡0) must be designed so that ̃︀𝑢 (𝑥, 𝑡) has the correct boundary conditions. This can be very
challenging for complicated domains.

Both of these two methods have their advantages. The first way is simpler to implement and can be more easily
extended to high-dimensional PDEs and PDEs formulated on complicated domains. The second way assures that
the initial/boundary conditions are exactly satisfied. Considering that differential equations can be sensitive to ini-
tial/boundary conditions, this is expected to play an important role. Another advantage of the second method is that
fixing these conditions can reduce the effort required during the training of the ANN. NeuroDiffEq employs the
second approach.

5.3 The implementation

We minimize the loss function with optimization algorithms implemented in torch.optim.optimizer. These
algorithms use the derivatives of the loss function w.r.t. the network weights to update the network weights. The
derivatives are computed with torch.autograd, which implements reverse mode automatic differentiation. Auto-
matic differentiation calculates the derivatives base on the computational graph from the network weights to the loss,
so discretization is not required. Here, our loss function is a bit different from the ones usually found in deep learning
in the sense that, it not only involves the network output but also the derivatives of the network output w.r.t. the input.
This second kind of derivatives is computed with torch.autograd as well.

Most of the logic of the above-mentioned method is implemented in ode.solve and pde.solve2D functions. The
following diagram shows the process flow of solving a PDE ℒ𝑢− 𝑓 = 0 for 𝑢(𝑥, 𝑦). The PDE is passed as a function
that takes in 𝑥, 𝑦 and 𝑢 and produces the value of ℒ𝑢−𝑓 . To specify the differential operator ℒ, the user can make use
of the function neurodiffeq.diff which is just a wrapper of torch.autograd.grad. During each training
epoch, a set of 𝑥 and 𝑦 is generated as torch.tensor. They are split into multiple batches. Each batch is used
to make a little tweak to the network weights. In each iteration, a batch of 𝑥, 𝑦 are fed into the neural network, the
output then transformed to impose the boundary conditions. This gives us the approximate solution �̃�. 𝑥, 𝑦 and �̃� are
then passed to the PDE function specified by user to calculate ℒ�̃� − 𝑓 and the final loss function (the default is just
(ℒ�̃�− 𝑓)2). The optimizer then adjusts the network weights to better satisfy the PDE by taking a step to minimize the
loss function. We repeat these steps until we reach the maximum number of epochs specified by the user.
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